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Nonspherical particles are ubiquitous in nature and industry, yet previous theoretical models of granular
media are mostly limited to systems of spherical particles. The problem is that in systems of nonspherical
anisotropic particles, dynamic particle alignment critically affects their mechanical response. To study the
tendency of such particles to align, we propose a simple kinematic model that relates the flow to the
evolution of particle alignment with respect to each other. The validity of the proposed model is supported
by comparison with particle-based simulations for various particle shapes ranging from elongated rice-like
(prolate) to flattened lentil-like (oblate) particles. The model shows good agreement with the simulations
for both steady-state and transient responses, and advances the development of comprehensive constitutive
models for shape-anisotropic particles.
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Constitutive models in granular physics consider particle
sizes, yet mostly not particle shapes. The significance of
particle shapes in granular media was examined, both
experimentally and numerically [1–8], but not through a
simple and concise mathematical theory. However, all
naturally occurring granular flows are composed of non-
spherical particles; sand particles, rocks, or pebbles always
present a certain degree of asphericity [6,9,10]. Also in
industry most particles are nonspherical [11,12], in par-
ticular, in agriculture and food processing where crops have
elongated or flattened shapes, or in pharmaceutics with
pills and drug capsules. Understanding how particle shape
affects granular flows is therefore fundamental for these
fields. Particle shape is challenging to consider in general,
as arbitrary shapes necessitate two-dimensional close sur-
face representations [13–16]. Here, we consider the sim-
plest extension from spherical particles, through a single
parameter that captures any ellipsoidal shape. This exten-
sion introduces the additional concept of particle orienta-
tion which can be defined uniquely for such particles
(Fig. 1). The static packing and flow of such particles
have been studied previously [17–22]. It has been observed
[20–23] that elongated particles tend to reach an average
steady-state angle in simple shear that is misaligned with
the streamlines. The origin of this preferred orientation
remains unclear, but it is proposed that this is related to the
asymmetry of the flow relative to the streamlines. This can
be reasoned since in simple shear, the principal directions
of the rate of deformation are aligned 45° to the streamlines,
but associated with extension and contraction. It was
observed that particles tend to reach a steady-state ori-
entation where the larger particle dimension lies between

the streamline and the positive principal direction
[20,21,23], yet there is a need for a model capable of
predicting this steady-state orientation. The proposed
model will address this point by recognizing that while
alignment with streamlines is expected, additional driving
forces attract particles to align with the positive principal
direction due to extension, and to divert from the negative
principal direction due to contraction. These additional
effects drive the average orientation from a complete
alignment with streamlines toward the positive principal
direction. The preferred steady-state orientation has strong
dependency on the particle shape. In addition, the particle
shape strongly affects the degree of particle alignment
(ordering), which increases dramatically for more ellipsoi-
dal particles, as the new model will also capture.
In this Letter, we develop a purely kinematic continuum

model to predict the average particle orientation and
ordering based on the velocity field and particle shape.
This model is then compared with discrete element method
(DEM) simulations, showing a very good agreement under
both steady-state and transient flows. We focus on ellip-
soidal particles, such as rice, lentil, and drug capsules,

FIG. 1. Examples of oriented ellipsoidal particles. (a),(b) Rice
and capsules (rg ≡ ðl − dÞ=ðlþ dÞ > 0), (c) lentils (rg < 0).
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where each particle is characterized by only two lengths d
and l, with d < l for prolate particles and l < d for oblate
particles [Fig. 2(b)]. The orientation of such particles can be
defined unambiguously as the direction along the sym-
metry axis �k. The statistical particle orientation at a
given point in space and time can be represented by a
probability density function f, such that fðkÞ≡fð−kÞ≥0

and
H
S2 fðkÞda ¼ 1, where S2 denotes the unit sphere.

Simpler representations of the particle orientation distri-
bution [24,25] can be obtained by using the Nth order
tensorial moment of fðkÞ, where taking larger N gives a
more refined representation of fðkÞ. Here we seek the
simplest model using only the second order orientational
tensor

A ¼
I

S2
fðkÞk ⊗ kda: ð1Þ

Using the symmetry property of A, its spectral representa-
tion is A ¼ P

3
i¼1 aiai ⊗ ai, where 1 ≥ a1 ≥ a2 ≥ a3 ≥ 0

are the eigenvalues, a1 þ a2 þ a3 ¼ 1, and fa1; a2; a3g are
the associated mutually orthogonal eigenvectors. The
orientational tensor has two invariants. One can represent
the degree of particle alignment, as an ordering measure
defined by

ζ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðða1 − a2Þ2 þ ða2 − a3Þ2 þ ða3 − a1Þ2Þ

r

; ð2Þ

where 0 ≥ ζ ≥ 1. The limit case of ζ ¼ 0 corresponds to
isotropic distribution, while ζ ¼ 1 is when all particles are
aligned along a1 and a1 ¼ 1, a2 ¼ a3 ¼ 0. A second
meaningful invariant is defined and discussed in the
Supplemental Material [26] as ζ1 ¼ ð27=2Þ det
f½A − ð1=3ÞI�=ζg.

To develop a model for the evolution of the orientational
tensor subjected to the velocity field v, we first split the
velocity gradient into its symmetrical part D ¼ ½grad vþ
ðgrad vÞT �=2 ¼ DT , the rate of deformation, and antisym-
metric part W¼½gradv−ðgradvÞT �=2¼−WT , the vortic-
ity. We then propose the following two-parameters model
for the orientational tensor:

_A ¼ WA −AW þ λ½DAþAD − 2ðA ·DÞA�
− ψkD0kðA − I=3Þ ð3Þ

where _A is the material time derivative of A, I is the
identity tensor, A ·D ¼ trADT is the scalar product, λ
and ψ are model (constitutive) parameters, and D0 is the
deviatoric part of the rate of deformation. The evolution
Eq. (3) is formulated by taking the time derivative of Eq. (1)
_A ¼ H

S2 fðkÞð _k ⊗ kþ k ⊗ _kÞda, where k is a material
line element and the area element da convects with the
rotation of the particles, such that fðkÞda is constant in
time. Since k is a material line element, _k ¼ Wkþ λDk,
where W and D are independent of k and can be taken
outside of the integration. Finally, we add a correction term
to satisfy the traceless requirement and a relaxation toward
isotropic distribution. This evolution law satisfies the frame
indifference (objectivity) requirement.
The material parameter λ governs the tendency to align

with the rate of deformation, D. It follows that λ ¼ 0 for
spherical particles and kλk increases as the particles
become more ellipsoidal, with kλk → 1 as one of the
particle dimension vanishes. In addition, λ is positive for
prolate particles and negative for oblate particles since the
larger dimension of the particle tends to align with the
streamlines. Alternatively, for kλk ¼ 1 the particle orien-
tation completely convects with the flow; hence, kλk can be
seen as a measure of orientation attachment to the flow.
Discrete contacts and collisions between particles also drive
the particles to misalign. To include this we assumed that
relaxation toward isotropic distribution is proportional to
the granular temperature, usually seen proportional to the
shear rate kD0k. The relaxation parameter ψ must be non-
negative as relaxation is assumed to be toward isotropic
distribution, and is anticipated to decrease for more
ellipsoidal particles and hence reacts less to collisions.
For further formulation it is convenient to define the shape
ratio as rg ≡ ðl − dÞ=ðlþ dÞ. This shape measure takes the
values −1 < rg < 1, where rg vanishes for spherical
particles, is positive and increasing with the elongation
for prolate particles, and negative and decreasing with the
particle flatness for oblate particles. The model parameters
can depend on all the objective characteristics of the
system, e.g. particle shape, particle size, rate of deforma-
tion, the orientational tensor etc. However, for simplicity
we limit our study to the simplest case where the model
parameters are only functions of the shape ratio, that is

(a) (b)

(c)

FIG. 2. (a) Typical geometry of the DEM simulations. (b) Di-
mension and orientation definition for elongated or flat particles
used in simulation. (c) DEM contact model. Examples of video
and snapshots from the simulations are given in the Supplemental
Material [26].
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λðrgÞ and ψðrgÞ. Furthermore, although there is no specific
requirement for symmetry between prolate and oblate
particles, for simplicity we take λð−rgÞ ≈ −λðrgÞ and
ψð−rgÞ ≈ ψðrgÞ.
To examine the performance of the kinematic model

Eq. (3) and to determine its parameters, we carried out
DEM simulations with LIGGGHTS [27] in a three dimen-
sional simple shear configuration [Fig. 2(a)]. Two walls
made of spheres having imposed motion separated by H
and with normals �e3 apply: (1) shear motion with relative
constant velocity V ¼ 0.5 m:s−1 in the �e1 directions; and
(2) constant pressure P ¼ 900 Pa on the medium. The
simulations are periodic in the�e1 and�e2 directions, and
contain 1000–5000 shaped particles obtained by rigidly
connecting spheres of diameter d ¼ 0.0015 m and density
ρ ¼ 2500 kgm3 together [Fig. 2(b)] leading to a typical
inertial number of 6 × 10−3. Although the obtained shaped
particles are not strictly speaking ellipsoids, this method is
chosen for its simplicity and efficiency. The interaction
between individual spheres belonging to distinct shaped
particles is dictated by a Hertz normal contact law with
normal and tangential dissipation and friction [Fig. 2(c)]
[28]. The normal force between the particles is modeled by
a Hertzian spring with stiffness kn ¼ 81 × 103 Nm−3=2 and
viscous damping with viscosity γn ¼ 0.06 kg s−1m−1=4;
the tangential contact force is modeled similarly with a
stiffness kt ¼ 86 × 103 Nm−3=2 and viscosity γt ¼ γn. The
tangential force is limited by a Coulomb friction coefficient
μg ¼ 0.5. The particles are displaced according to their
contact forces by a Verlet algorithm. More details are
available in the appendix of [29]. Neglecting any boundary
effect, the flow is simply characterized by the shear rate
_γ ¼ V=ð2HÞ, with

D ¼ _γðe1 ⊗ e3 þ e3 ⊗ e1Þ;
W ¼ _γðe1 ⊗ e3 − e3 ⊗ e1Þ ð4Þ

being the homogeneous rate of deformation and vorticity,
respectively.
The discrete form of the orientational tensor A of an

assembly of L particles is AD ¼ ð1=LÞPL
i¼1 ki ⊗ ki. The

model parameters are determined by comparing the orienta-
tional tensor in the steady-state of an ideal simple shear
obtained by the model,AS

M, and the one computed from the
DEM simulations,AS

D, such that minλ;ψkAS
M −AS

Dk, where
kk is the standard Euclidean norm. For a given value of rg,
the parameters λ and ψ can be determined such that the
model and the DEM simulation show excellent agreement
with kAS

M −AS
Dk=kAS

Dk ≈ 10−2. This suggests that the
model well captures the salient physics of the particle
orientation and alignment represented by the orientational
tensor since only two parameters are used to predict the
orientational tensor which consists of 5 degrees of freedom.
We determine the parameters λðrgÞ and ψðrgÞ, as shown in

Figs. 3(a) and 3(b), using simple shear simulations
with −1 < rg < 1. Two empirical relationships satisfying
the numerical measurements are then proposed: λðrgÞ ¼
ð2=πÞtan−1ð5.5rgÞ and ψðrgÞ ¼ 0.85 exp ð−4r2gÞ. These
functions are merely curve fitting with no particular
physical significance. The fits are based on data in the
range rg ∈ ½−0.6;−0.2� and rg ∈ ½0.2; 0.7� and might not
be accurate for small or large values of krgk. Furthermore,
although we found rate independence in the low inertial
number regime studied, it is likely that under much higher
strain rates the functional forms of λ and ψ would further
depend on the inertial number. The preferred orientation,
a1, lies in the plane e1 − e3 as expected, and the misalign-
ment angle from the streamlines (which are aligned with
e1) is α ¼ tan−1ða1 · e3Þ=ða1 · e1Þ. It should be noted that α
is different from the average angle of the distribution. In
Figs. 3(c) and 3(d) the ordering, ζ, and the misalignment, α,
are depicted as a function of rg, showing good agreement
between the model prediction and the orientation properties
measured in simulations. It is interesting to note that for
slightly nonspherical particles the misalignment angle
converges to ≈20° from the streamlines, while the ordering
vanishes.
The ordering and orientation are completely described

by the tensor quantity A, which represents the second
moment of the probability density function fðkÞ. However,
the probability density function f cannot be accurately
recovered from A alone. The optimal approximation is
quadratic in k, as shown in [30] and presented in Fig. 4.
This approximation is exact for isotropic distribution
A ¼ ð1=3ÞI when fðkÞ ¼ ð4πÞ−1; however, the accuracy
of this approximation diminishes as the alignment
increases. For highly aligned particles this approximation

(a) (b)

(c) (d)

FIG. 3. (a), (b) Material parameters λ and ψ as a function of the
shape ratio rg. (c), (d) Model prediction for ordering, ζ, and
misalignment angle, α, subjected to simple shear.
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can even predict negative values perpendicular to the major
alignment axis which are unphysical. Figure 4 demon-
strates that this approximation is acceptable for low order-
ing, ζ ≈ 0.2, but fails for high ordering ζ ≈ 0.6.
To further explore the performance of the kinematic

model, the transient response is studied by a comparison
with DEM numerical simulations. Initially, the numerical
system is sheared in a particular direction until a steady
state is obtained. The wall velocities are then reversed to the
same shear rate in the opposite direction. This yields a
transient response between two steady states which are a
mirror reflection of each other. We also use the model to
study the transient response and compare it with the
numerical results, without changing λ and ψ , which were
determined using the steady-state configurations. For the
particular case of simple shear defined in Eq. (4), the
direction reversal is obtained by changing the sign of
the rate of shear _γ. It should be noted that while the steady
state is very close to being homogeneous in the DEM
simulations, hence justifying the homogeneous rate of
deformation and vorticity as assumed in the model
response, for the transient case this assumption is clearly
incorrect as sharp reversal of the wall velocities imposes
inertial propagation from the walls into the bulk which, at
least initially, is not homogeneous [31]. Nevertheless, we
use homogeneous strain rate and vorticity fields Eq. (4) to
study the transient response of the model and for qualitative
comparison with the DEM simulations. In addition, since
constant pressure is imposed by the walls, the wall gap
varies slightly during the transient response.
Figure 5 shows that the model well captures the trends

of the transient responses observed in the simulations.
Specifically, the transient response includes a significant
reduction in the ordering, as the particles realign with the
flow, followed by an increase in the ordering and returning
to the same ordered steady state. This response is less

significant in the simulations, which can be attributed to the
differences between the DEM and the model related to the
homogeneity of the velocity field. While the DEM transient
is gradual as the transient propagates from the walls into
the bulk, the model exhibits a homogeneous transient. The
model shows overshooting of the ordering before returning
to a steady state, while the simulations show insignificant
or no overshooting. The orientation transient shows a
somewhat unexpected response as the transients occur in
the opposite direction of rotation to what is intuitively
expected. Specifically, one might have expected the pre-
ferred orientation to rotate counterclockwise [with respect
to Fig. 2(a)] during shear reversal to follow the new
vorticity field. However, both the model and DEM show
very similar response where the preferred orientation
rotates in the clockwise direction opposite to the vorticity
induced by the walls (Fig. 5 insets). As the transient
propagates into the bulk yielding a more homogeneous
field the overall rotation is clockwise, very similar to the
prediction of the model. In addition, both the model and
DEM show similar orientation overshooting before the
steady state is obtained. It can be concluded that the
model well captures qualitatively the transient response.
The quantitative differences between the model and DEM
could be attributed to the error introduced by the homo-
geneity approximation used in the model. This is supported
by the observation that the model predicts a more profound
and rapid transient than the DEM where the response is a
gradual transient progressing from the walls into the bulk.
In summary, a kinematic model for the evolution of the

alignment of ellipsoidal particles was proposed and com-
pared with DEM simulations. The model consists of only
two model parameters that for simplicity are assumed to
depend only on the shape of the particles (shape ratio). In
general, the material parameters should also depend on
particle size, ordering, rates, etc.; however, this was not

(a) (b)

(c)
(d)

FIG. 4. Probability density function of particle orientation: (a),
(b) based on optimal quadratic approximation in k given by [30]
as fðkÞ ≈ ð15=8πÞ½k · ðAkÞ − ð1=5Þ�, while (c), (d) measured
from simulations. (a), (c) rg ¼ 0.2; (b), (d) rg ¼ 0.6. Red lobes in
(b) are unphysical negative values.

FIG. 5. Comparison of the model and DEM transient response
over dimensionless time t̂ ¼ tj_γj for various particle shapes.
Insets: nontrivial tendency of particles to reorient after shear
reversal.
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considered here for simplicity. The two parameters were
determined by comparison with DEM simulations of
simple shear at a steady state. It was shown that the two
parameters are sufficient to obtain a very good agreement of
the full orientational tensor A between the model and the
simulations. The transient response was used to further
investigate the validity of the model. The model showed
good agreement with the DEM simulations, capturing the
essential transient features.
The stress response of an assembly of oriented particles

has strong dependency on the alignment of the particles.
While random distribution shows isotropic response,
ordered arrangement shows increasing orthotropic proper-
ties with transverse isotropy as a special case. Hence, the
stress response of an assembly of particles can vary from
isotropic to increasing degree of orthotropy as the particle
alignment (ordering) increases. The stress response of the
oriented particles is outside the focus of this Letter;
however, the representation of the particle alignment
established in this Letter provides the foundation to further
develop a stress response model of orthotropic elastic-
viscoplastic material [32] that depends on the orientational
tensor. Specifically, the principal directions of the orienta-
tional tensor, A, form the orthotropic basis, and the
invariants govern the directional properties of the particle
assembly. In addition, the current analysis was based on
transient simple shear conditions, while other flow con-
ditions would require further evaluation. Finally, beyond
granular media and in the context of previous findings
[33–36] the current treatment can also enrich the study of
the reorientation of biological cells, magnetic particles,
liquid crystals, and polymers.

*bnadler@uvic.ca
†itai.einav@sydney.edu.au

[1] J. C. Santamarina andG. C.Cho, inAdvances inGeotechnical
Engineering: The Skempton Conference, edited by R. J.
Jardine, D.M. Potts, and K. G. Higgins (ICE Publishing,
London, England, 2004), Vol. 1, p. 604.

[2] F. Alonso-Marroquin, S. Luding, H. J. Herrmann, and I.
Vardoulakis, Phys. Rev. E 71, 051304 (2005).

[3] A. Pena, R. Garcia-Rojo, and H. Herrmann, Granular Matter
9, 279 (2007).

[4] T. Matsushima, J. Katagiri, K. Uesugi, A. Tsuchiyama, and
T. Nakano, J. Aerosp. Eng. 22, 15 (2009).

[5] J. Katagiri, T. Matsushima, and Y. Yamada, Granular Matter
12, 491 (2010).

[6] T. Matsushima and C. S. Chang, Granular Matter 13, 269
(2011).

[7] J. Tang and R. P. Behringer, Europhys. Lett. 114, 34002
(2016).

[8] E. Azéma, I. Preechawuttipong, and F. Radjai, Phys. Rev. E
94, 042901 (2016).

[9] H. Wadell, J. Geol. 40, 443 (1932).
[10] J. K. Mitchell and K. Soga, Fundamentals of Soil Behavior

(John Wiley & Sons, Hoboken, NJ, 2005).
[11] P. W. Cleary and M. L. Sawley, Appl. Math. Model. 26, 89

(2002).
[12] C. González-Montellano, F. Ayuga, and J. Ooi, Granular

Matter 13, 149 (2011).
[13] E. T. Bowman, K. Soga, and T.W. Drummond, Particle

Shape Characterisation Using Fourier Analysis (University
of Cambridge, Cambridge, England, 2000).

[14] G. Mollon and J. Zhao, Granular Matter 15, 95 (2013).
[15] D. A. H. Hanaor, Y. Gan, M. Revay, D. W. Airey, and
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