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Frictional hyperspheres in hyperspace
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We extend the formulation of the discrete element method, which is typically used to simulate granular media,
to describe arbitrarily large numbers of spatial dimensions and the collisions of frictional hyperspheres in these
simulations. These higher dimensional simulations require complex visualization techniques, which are also
developed here. Under uniaxial compression, we find that the stiffness of a granular medium is independent
of the dimension for dimensions greater than one. In the dense flow regime, we show that the compressibility
and frictional properties of higher dimensional granular materials can be described by a common rheology, with
the main distinction between dimensions being the packing fraction. Results from these simulations extend our
understanding of the effects of dimensionality on the behavior of granular materials, and on elastic and frictional
properties in higher dimensions.
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I. INTRODUCTION

Physicists strive to describe the world based on ob-
servations made in three spatial dimensions. However, the
mathematical tools and the physical laws developed can
usually be generalized to higher dimensional spaces. Such
generalizations can shed light on the deeper structure of the-
ories and models, and can suggest new approaches to solve
3D problems, improving our understanding of the world we
live in. Several theories therefore rely on higher dimensional
spaces such as the Riemannian manifolds in general relativ-
ity [1], the potential for our universe to be a hologram [2],
multidimensional spaces in string theories [3], and the projec-
tion of higher dimensional crystals to explain the structure of
quasicrystals in chemistry [4].

As higher dimensional analytical models are developed,
and since experimental validation cannot typically be per-
formed, numerical simulations offer a pathway to study higher
dimensional behavior. Here we will focus on discrete ele-
ment modeling, which simulates the motion of assemblies
of individual particles based on the forces that govern their
interaction. Using similar methods, the higher dimensional
packing of hard frictionless spheres has previously received
significant attention [5–7] and has been shown to have im-
portant consequences in information theory [8] and error
recovery for data transmission [9]. Molecules and phase tran-
sitions are often simulated with molecular dynamics, which
has been extended to a fourth spatial dimension to improve the
computational efficiency of protein folding by removing the
possibility of knots [10] and accelerate structural calculations
in other systems [11,12].
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Previous simulations have dealt only with translational de-
grees of freedom: the particles do not have any degrees of
freedom in rotation [6,13–15]. Granular materials, such as
sand, cereal, or snow, are primarily controlled by the fric-
tion between their constituent particles. This friction acts to
frustrate the rotation of the particles, which in turn dictates
their dynamic behavior. Any attempt to study higher dimen-
sional granular materials numerically must therefore include
rotational degrees of freedom, which are captured in the
simulation scheme presented in this work alongside specific
visualization tools.

II. SIMULATION METHOD

A hypersphere is the generalization of a sphere to an ar-
bitrary number of dimensions, N . A hypersphere is therefore
defined as the set of points that are a distance r from its center,
and we limit ourselves to Euclidean spaces. The coordinates
of the center of a hypersphere are denoted xi along the di-
rections ei, with i from 1 to N . We use the term hypersphere
to denote the surface (or more generally the boundary) of an
N-ball.

We simulate the motion of frictional hyperspheres using an
extension of the discrete element method [16], which com-
putes the translational and rotational motion of individual
grains by solving the equations of momentum and angular
momentum conservation for each particle. When grains con-
tact one another we model the collision using linear elastic
repulsion with elastic constant kn and viscous damping in the
normal direction, as well as linear springs, viscous damping,
and Coulomb friction in the direction tangential to the contact,
with friction coefficient μg. The inclusion of tangential forces,
and in particular friction, is essential in this study as those
forces affect the rotational motion of the grains, which is a key
aspect in understanding the mechanical behavior of granular
media. The simulations are nondimensional, with the diameter
of the hyperspheres giving the length unit [L] and their mass
giving the mass unit [M]. The time unit [T] is set by the exter-
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FIG. 1. Visualizing hyperspheres. (a) Schematic representation of a 3-ball (gray) being sliced by two 2D planes (blue and pink) at distances
a and b from its center (dashed line). The size of the respective intersecting 2-balls (circles) are shown in blue and pink, with reduced radii
ra and rb. (b) Texturing process for a 3-ball. Left: 2D source texture in hyperspherical coordinates ϕ and θ1. Center: A set of points on the
projected 2D surface of the 3-ball representation of the original 3-ball in u, v coordinates. Parameterization of the rendered sphere surface using
u, v coordinates, with corresponding color from the 2D texture. Right: Rendering of the 3-ball with attached texture. (c) Texturing process for
a 4-ball. Left: 3D source texture in hyperspherical coordinates ϕ, θ1, and θ2. The gray volume indicates the region in which the 3D texture
volume is defined, and the locations of the displayed colors within it correspond to the points to be mapped from this volume. Center: A set
of points on the projected 2D surface of the 3-ball representation of the original 4-ball in u, v coordinates. Parameterization of the rendered
sphere surface using u, v coordinates, with corresponding color from the 3D texture. Right: Rendering of the 4-ball with attached texture.
[(d)–(f)] Two 4-balls colliding. Particles moving towards each other, except for an offset in x4, with particle centers at x4 = ±0.2. (d) Observer
with o4 = 0.2, the same as the initial position of the center of the top particle. (e) Observer with o4 = 0, the same as the the contact point. (f)
Observer with o4 = −0.2, the same as the initial position of the center of the bottom particle.

nal gravitational force applied to the grains −→g = 1 [L T−2].
See Appendix A for details on the equations of motion and
their numerical implementation.

Visualizing simulation results is crucial to understanding
the behavior and characteristics of any simulated system. A
large variety of techniques can be used to visually examine the
dynamics of 2D and 3D granular media [17–20]. For higher
dimensional granular media it is not possible to represent all
of the particles in a 3D space simultaneously, and the particles
must be intersected with a 1D, 2D, or 3D space. A straightfor-
ward method to do this is to slice the hyperspace with a 3D
volume: all but three of the dimensions are frozen, resulting
in a 3D space which can be explored using conventional
viewing techniques. By progressively scanning through the
frozen values, the higher dimensions can be explored as well.
Hyperspheres are thus represented visually as 3-balls, but usu-
ally with a smaller diameter than the actual hypersphere. This
method of visualization is shown schematically in Fig. 1(a)
where a 3-ball is visualized in two dimensions by slicing
with a 2D plane. Interactive examples of this visualization
technique can be found at Ref. [21] and in a video in the
Supplemental Material [22].

With this method, for systems where N > 3, the first three
of the N dimensions are selected as those to intersect with. In
order to actually perform the rendering, an observer location
�o needs to be defined. This observer has the property that it

renders only objects that have the same coordinates oi for
i > 3 (effectively implementing the intersection with a 3D
space discussed previously). The remaining coordinates o1,
o2, o3, are then used to create the final on-screen rendering
(2D).

By varying the observer location in higher dimensions, the
rendered particles remain at the same apparent location but
change in apparent size [cf. Fig. 1(a)]. As an example, the
collision of two 4-balls, with a texture to their boundary as a
means of visualizing their rotation, is shown in Figs. 1(d)–
1(f). Two particles move towards each other in x1 and are
initially aligned along this axis except for an offset of x4 =
±0.2. Their contact point is at x4 = 0 [Fig. 1(e)], and the
hyperspheres do not appear to contact from other viewing
locations [Fig. 1(d) or 1(f)]. After collision, the particles gain
velocity in x4, and therefore their size observed from a par-
ticular o4 evolves over time until they eventually disappear
from view. At the same time, the particles acquired a rotational
velocity from their collision, and therefore their texture also
evolves.

In order to visualize the rotation of hyperspheres, we
apply suitable textures to them, so that changes in these
textures are visible when the particle rotates. The bound-
ary of a N-dimensional ball is a N − 1-dimensional sphere,
and so, for dimensions higher than three, only a sub-
set of the full ball boundary texture is mapped onto its
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representation in 3D space. For the purposes of texturing
particles, it is convenient to parameterize this surface us-
ing hyperspherical coordinates, such that a point on the
surface of the hypersphere can be located using N − 1 an-
gles ϕ, θ1, θ2, . . . , θN−2, with the angles ϕ ∈ [0, 2π ] and θi ∈
[0, π ]. Using this notation, one can define a “texturing” func-
tion which maps these hyperspherical coordinates to a given
color space. Moreover, to be a smooth texture the function
f :(ϕ, θ1 . . . θN−2) −→ (color) should also verify, ∀θ, f (ϕ =
0) = f (ϕ = 2π ), so that it is periodic when mapped on
to the particle, and ∀k ∈ {1:N − 2},∀θi �=k,∀ϕ, f (θk = 0) =
constant and f (θk = π ) = constant, which ensures that points
for which certain θi are 0 or π are defined by a single color. To
simplify the texturing process we choose f as a combination
of colors scaled by sinusoidal functions of the hyperspherical
angles which go to black whenever θi is 0 or π . Examples of
the resulting textures are visible in Figs. 1(b) and 1(c). The
texture is then mapped onto individual particles given their
current rotation and camera position. Further details are pre-
sented in Appendix B. The colormap used in four dimensions,
as well as an additional explanation of hypersphere rotation
and texturing, is available in a video in the Supplemental
Material [22].

We have applied the previously described simulation and
visualization method to three setups which are commonly
simulated for 3D granular materials: the random packing of
frictional hyperspheres, their uniaxial compression, and their
flow on an inclined plane.

III. RANDOM PACKING

Particles are placed randomly in a simulation domain with
a single wall whose normal vector points towards e1, and
periodic boundary conditions in all other spatial dimensions.
The grains are left to relax under gravity acting along −e1,
until coming to rest forming a random packing on the wall
[Figs. 2(a)–2(d)]. The thickness of this granular layer gives
the solid volume fraction, and the number of contacts per
grain yields an average coordination number, both of which
are shown in Figs. 2(e) and 2(f). The interparticle friction
coefficient μg is varied between 0 and 1 to explore the effect
of friction on the packing fraction.

Both the random packing and the densest known volume
packing fraction of balls decrease as the number of spa-
tial dimensions increases [23]. In addition, higher friction
coefficient between grains generally decreases the packing
fraction in a given dimension, as the grains more easily
interlock. Consequently, the measured volume fraction for
frictional grains is significantly smaller than the one obtained
for the random packing of hard spheres from [6].

Figure 3 explores the coordination number of the grains
in different dimensions for the case μg = 0.5. The average
coordination number shows an essentially linear increase with
dimension in Fig. 3(a), which is markedly different from the
much faster increase of the maximum number of hyperspheres
that could potentially be in contact with a single particle (the
kissing number). This suggests that the packing formation is
mainly dictated by isostaticity and by the minimum number
of grains necessary to maintain the stability of a single par-
ticle, which is itself given by N , and not by the boundary of

[23,24]

FIG. 2. Packing properties of dense granular media. [(a)–(d)]
Particle visualizations of random packing in dimensions 3, 4, 5,
and 6, respectively. The particles are colored randomly. (e) Volume
fraction as a function of N for the simulated random packing and
for the densest known packing [23,24] and frictionless hypersphere
packing [6].

[25,26]

FIG. 3. (a) Coordination number as a function of N for the
simulated random packing with μg = 0.5 and maximum theoretical
value of the coordination number [25,26] (also known as the kissing
number) and the isostatic packing bounds [27]. (b) Probability distri-
bution of the number of contacts in different dimensions, μg = 0.5.
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FIG. 4. Normal stress along the compression axis in uniaxial
compression as a function of volumetric strain for different spatial
dimensions. Inset: The same data on a logarithmic scale. A slope of
1 corresponds to the response of a linear elastic medium.

the N-ball. This is in agreement with the theoretical bounds
of isostatic packing for spheres with no friction or infinite
friction also indicated in Fig. 3(a). On an individual particle
level, Fig. 3(b) shows that in all dimensions, a significant
number of particles have more contacts than required from the
isostaticity argument, which is expected to affect the overall
mechanical properties of the packing. Note that since all the
particles are in a stable static state, the minimum number of
contacts for any grain in a given dimension is N .

IV. UNIAXIAL COMPRESSION

The loading condition of uniaxial compression directly
generalizes to higher dimensions. Starting from the packing
condition described previously, a solid boundary is added
above the grains and moved towards −e1 at a constant velocity
of 0.1 [L T−1]. The friction coefficient between grain is kept
constant at 0.5 during the uniaxial compression phase. The
displacement when the moving boundary first touches the
granular medium is taken to be a strain of 0, and the normal
stress σ this applies to the boundary as a function of the vol-
umetric strain ε is shown in Fig. 4. These simulations do not
show a clear trend with dimension number, suggesting similar
mechanical properties of the bulk medium as a function of
dimension. For N = 1, the stress increases linearly with strain,
indicating linear elasticity of the medium, which effectively
corresponds to an array of linear springs. For N > 1, however,
the stress increases nonlinearly with strain, despite the contact
law being an identical linear Hookean elastic law for all di-
mensions. The grain packing therefore significantly modifies
the mechanical properties of the medium. It should be noted,
however, that the use of linear spring interactions between
grains may be physically inappropriate for higher dimensions,
since it is well known that in dimension 3 a linear elastic ma-
terial exhibits a nonlinear dependency for the normal contact
of spheres (Hertzian model [28]).

The bulk stiffness of a 3D granular medium is known
to significantly change with initial packing density [29,30].

FIG. 5. (a) Example of scaled pressure versus strain in N = 6 for
uniaxial compression, with different initial packing volume fraction
φs. Inset: Pressure scaled by volume fraction dependency, and best
fit with Eq. (1). (b) Coefficients � and n from Eq. (1) for various
dimensions.

To study this effect more generally, we perform uniaxial
compaction on packs prepared with different particle friction
coefficient μg, which create different initial packing densities
as shown previously in Fig. 2(e). An example of this density
dependence in dimension N = 6 is shown in Fig. 5(a), where
the stress σ along e1 scaled by the particle normal stiffness
kn is shown for different initial volume fraction φs. It is clear
that the stress at a given strain is higher for samples starting
at a higher volume fraction, which therefore appear stiffer. In
dimension 3, this density dependency can be taken into ac-
count by including a φ3

s dependency in the stiffness [31]. This
scaling appears to fit these observations in dimensions higher
than 1, as shown in the inset of Fig. 5(a) for N = 6. Following
this, we propose the following stress-strain dependency in our
uniaxial compression of frictional hyperspheres:

σ

kn
=

(
φs

φmax

)3

�2−Nεn, (1)

where φmax is the volume fraction of the densest regular
packing in the considered dimension, and � and n are mate-
rial parameters which depend on the dimension. Figure 5(b)
shows the evolution of those parameters with dimension, in-
dicating that n tends to 3/2 even with linear elastic contact
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FIG. 6. Frictional behavior of hyperspheres during inclined plane flow. (a) Coarse-grained volume fraction φ as a function of inertial
number I for various dimensions N . (b) Values of best linear fit parameters to φ = φ0 − 	φI as a function of N . (c) Friction coefficient μ as a
function of inertial number I . The measured I is averaged across the depth of the flow from the local coarse-grained values, and the error bars are
the standard deviation around this mean estimation and do not take into account the uncertainty in the coarse-graining estimation (decreasing
with increasing N). There are ∼15 coarse-graining points in the flowing layer along e1, using a window size w = 3r; see Appendix C for more
details. (d) Example of a 5D crystalline state [shown in light blue in (a) and (c)]. Particle coloring indicates the location of the particle center
in x5. Particle centers in x4 and x5 are depicted on the torus in gray.

between the grains. The length � is necessary to translate
the stiffness at contact level, with units of [M T−2], to the
stress, with units of [M T−2 L2−N ]. The value of � is therefore
1 [L] for N = 1, undetermined in N = 2, and measured to be
approximately 0.5 [L] for N > 2.

V. INCLINED PLANE FLOW

Inclined plane flow also generalizes readily to higher di-
mensions for N � 2. In the first dimension, a solid boundary
is located at x1 = 0, and a gravity vector −→g is applied
forming an angle α from −−→e 1 towards −→e 2, with g =
10(− cos α−→e 1 + sin α−→e 2). Again, every dimension other
than the first has periodic boundaries. The initial domain size
is 20 × 5 × 3.4 × · · · × 3.4 particle diameters in each spatial
direction. The particles are initially positioned on an N-
dimensional square lattice, with additional randomness added
to their positions near the lattice points. The layer of particles
nearest to the base at x1 = 0 are kept fixed to act as a rough
boundary. The grains are initially left to settle under gravity
g = −10−→e 1. After consolidation, when the kinetic energy is
close to zero, gravity is then tilted to α = 35◦, and the grains
start to flow and eventually reach a steady state. Additional
gravity angles are then investigated by decreasing α in 1◦ steps
and waiting for a steady state to be reached at each step, until
eventually the grains come to rest. An example of such a flow
can be seen in a Supplemental Material video [22].

The different regimes of flow are very similar for all di-
mensions, and consistent with previous observations in N = 2
and 3, with a static pile at low angles and the development
of a dense flow as α rises above a threshold value, which
eventually leads to a supported flow [32] as α continues to
increase where a layer of dense grains flows on top of grains
in a gaseous state.

As has been done for 2D and 3D flows [33], it is conve-
nient to summarize the flowing behavior of these materials
by examining their frictional and volumetric behavior as a
function of the inertial number, I = 2r|γ̇ |√ρ/P, which is well
defined for all dimensions in this simple flow configuration.
γ̇ = ∂v

cg
2 /∂x1 is the shear strain rate, which is obtained by

discrete differentiation of the local coarse-grained velocity v
cg
2

along e2. P is the pressure in the material and is assumed
to be the hydrostatic pressure, obtained by integrating the
mass of grains from the surface of the flow given the volume
fraction profile φ(x1). The coarse-graining process used to
obtain v

cg
2 (x1) and φ(x1) is described in Appendix C.

By systematically varying the slope angle α, it is possible
to examine a range of μ = tan(α) and I values, and a summary
of the resulting information is shown in Fig. 6. The quasistatic
volumetric concentrations measured from free-fall deposition
above are recovered for low inertial numbers, and with in-
creasing inertial number the flow expands. This expansion is
characterized by the linear relation φ = φ0 − 	φI . Best-fit
values of φ0(N ) and 	φ(N ) are shown in Fig. 6(b), and both
reduce with increasing dimension.

The N = 5 dimension is clearly an outlier in this case, as at
low inertial number we observe large values of φ, significantly
higher than the random packing observed in Fig. 2. This is
attributed to the fact that the grains appear to crystallize as α is
reduced, leading to a higher volume fraction in the crystallized
phase. Figure 6(d) provides a visualization of this crystal.
In addition to the 3D slice, particle locations in dimensions
greater than three that are periodic can be mapped onto tori,
two dimensions per torus. In the example shown in Fig. 6(d)
of a 5D system, a single torus can represent the location of
all additional dimensions. All particles are mapped onto the
surface of the torus, with the current location of the observer
marked by the two white intersecting circles. Both the 3D slice
and the particles on the torus in Fig. 6(d) show clear alignment
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of the grains in preferential directions, quite different from the
random packing in Fig. 2(c). The formation of this crystal is
likely to depend strongly on the geometry of the simulation
box, boundaries, and flow conditions, but a precise character-
ization of the dynamic emergence of such a crystal is left for
further studies.

Kinematically, we find that all dimensions examined here
behave in the same manner, with a similar μ(I ) behavior,
shown in Fig. 6(c). This suggests that the knowledge acquired
from granular material behavior in two and three dimensions
may be directly applicable in understanding frictional hyper-
sphere packing and flows.

VI. CONCLUSION

In conclusion, we have developed an extension to the dis-
crete element method to simulate and visualize the behavior
of frictional hyperspheres. This numerical technique has been
used to simulate hyperspheres under free-fall consolidation,
uniaxial compression, and inclined plane flow. This allowed
the role of dimensionality in these setups to be uncovered and
sheds new light on the use of 2D simulations to mimic 3D
behavior. In particular, they validate the typical assumption
that the stiffness and shear resistance of 2D granular media
can be used to quantitatively predict 3D behavior.

Due to the inclusion of rotational degrees of freedom, it
is now possible to simulate physically larger particles. This
may be useful in describing various conformational problems,
such as the entanglement and alignment of polymers, fibers,
and sheets.
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APPENDIX A: SIMULATION METHOD

1. N dimensionality

In this work we use the term hyperspace to refer to a
Euclidean space RN of N ∈ N dimensions, where N is the
set of positive integers, with ortho-normal basis unit vectors−→e i in each of the N directions, such that a point in this space−→x can be defined as

−→x = x1
−→e 1 + x2

−→e 2 + · · · + xi
−→e i + · · · + xN

−→e N , (A1)

where xi are the components of this vector in each dimension
i from 1 to N .

A hypersphere is the direct generalization of a sphere in
a hyperspace. The hypersphere is therefore the set of points
located at a distance r from the hypersphere center, such
that for a hypersphere located at the origin, any point of the
hypersphere satisfies

x2
1 + x2

2 + · · · + x2
N = r2. (A2)

Similarly, an N-ball is the set of points inside a hyper-
sphere, verifying x2

1 + x2
2 + · · · + x2

N � r2. As it is common
practice to use the term sphere for both a ball and its surface,
in this work we use the term hypersphere to refer both to the
surface of the N-ball and to the N-ball itself.

Now that we have the required building blocks to construct
our simulation, we next need to define the equations of motion
that are relevant to the discrete element method in order to
compute the displacement of the hyperspheres.

2. Linear momentum conservation

The translational motion of a hypersphere can be directly
solved by generalizing Newton’s equations of motions. The
velocity −→v of a particle in an N-dimensional space can be
concisely written as

−→v ≡ d−→x
dt

= v1
−→e 1 + v2

−→e 2 + · · · + vN
−→e N . (A3)

Using this definition, we can directly generalize the con-
servation of linear momentum for a single particle to be

m
d−→v
dt

=
∑

c

−→
F c + m−→g , (A4)

where m is the mass of the particle, −→v its velocity,
−→
F c the

individual contact forces from neighboring particles, and −→g a
body force acting on the particle, for example, a gravitational
force. The sum is over all contacts c of the particle.

The mass of a hypersphere in dimension N of homoge-
neous density ρ (expressed in [M] [L]−N ) is known to be

m = ρVN = ρ
πN/2

�
(

N
2 + 1

) rN , (A5)

with VN = πN/2

�( N
2 +1)

rN the volume of a hypersphere and � the

Gamma function.
Our discrete element simulation is dimensionless (unit-

less), therefore we will choose the diameter of our hyper-
sphere as the length unit, 2r = 1 [L], and the mass of such a
hypersphere as the mass unit, m = 1 [M]. The density ρ of an
individual hypersphere will therefore be different for different
N in order to maintain the same unit mass for the hyper-
spheres, as VN changes with N . The time unit [T] is set by the
external force added to each of the particles, −→g = 1 [L T −2].
The equations of motion are solved using a Verlet algorithm
with time step set to 0.0001 [T].

3. Angular momentum conservation

In three spatial dimensions, the angular momentum evolu-
tion law for a particle p is typically written as

I
d−→ω
dt

=
∑

c

−→
lc × −→

F c, (A6)

where I is the moment of inertia of the particle, −→ω the angular

velocity vector, and
−→
lc × −→

F c is the torque created by the
contact force

−→
F c applied on the particle at a contact point

located at
−→
lc relative to the center of mass of the particle.

This equation does not generalize directly to higher spa-
tial dimensions, since the rotational velocity vector is only
a pseudovector, rather than a true vector. As can be seen in
Fig. 7, describing the rotational velocity of an object as a
vector is applicable only in three spatial dimensions. In two
dimensions, rotation can be described by a single scalar value,
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FIG. 7. Solid body rotation. (a) Definition of rotation rate ω in
two dimensions. This is a rotation of the 2D object along a vector
that is pointing out of the plane of rotation. (b) Definition of rotation
rate −→ω in three dimensions. This is a rotation of the 3D object about

a 3D vector. (c) Definition of solid body rotation
⇒
� using Eq. (A7)

and the contact between two hyperspheres.

which is therefore not a vector of the 2D space. A more
general approach, general in arbitrary numbers of dimensions,
is the concept of solid body rotation

−→v = −⇒
� · −→p , (A7)

where the velocity −→v of a point −→p pertaining to the solid

body is given through the rotational velocity tensor
⇒
�.

⇒
�

is a skew-symmetric tensor whose components describe the
motion of a point from one axis to another. For example, in
three dimensions:

⇒
�=

⎛
⎝ 0 ωe1→e2 ωe1→e3

ωe2→e1 0 ωe2→e3

ωe3→e1 ωe3→e2 0

⎞
⎠=

⎛
⎝ 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

⎞
⎠,

(A8)
and the associated rotation vector is −→ω = (ω1, ω2, ω3). Since
the rotational velocity tensor has N (N − 1)/2 degrees of free-

dom, it is clear that identification of the dual of
⇒
� with the

rotational pseudovector −→ω is possible only in three spatial
dimensions.

From the solid body rotation Eq. (A7) it is straightforward
to generalize the angular momentum conservation law by
generalizing the vector product to the wedge product, leading
to

I
d

⇒
�

dt
=

∑
c

−→
lc ∧ −→

F c, (A9)

where the contact torque tensors
⇒
Mc = −→

lc ∧ −→
F c have compo-

nents Mc
i j = lc

i F c
j − lc

j F
c

i .
These torques are skew-symmetric; therefore the skew-

symmetric properties of
⇒
� are maintained upon time evolution

through Eq. (A9). Finally, the generalization of the moment of

inertia I to any dimension is straightforward,

I =
∫

· · ·
∫

N-ball
ρ||�x||dx1dx2 · · · dxN . (A10)

4. Contact law

In order to close the equations of motion, a contact law
describing how particles interact with each other has to be
chosen. For granular materials, the contact force resulting
from the collision between two particles is usually modeled
by an elastic normal and tangential contact, with a frictional
cap on the tangential force, and viscous dissipation [16,28,34].
In this context, for two particles i and j, the normal force Fn

in the direction normal to the contact, and the tangential force
Ft in the plane of contact, is given by

Fn =(
knδ

a
n − γnvn

)
, (A11)

Ft = min(ktδt − γtvt , μgFn), (A12)

where kn, kt , γn, γt , μg are the normal and tangential elas-
tic constants, normal and tangential viscosity, and friction
coefficient, respectively; vn and vt are the relative normal
and tangential velocity between the grains; δn and δt are the
normal and tangential interpenetration, the latter taking into
account the history of the contact. The exponent a is 1 for
a Hookean contact [34] (known to be physically realistic in
two dimensions) and 3/2 for a Hertzian contact [28] (equiv-
alently in three dimensions). The derivation of the contact
force resulting from the contact of two elastic hyperspheres
being beyond the scope of this paper, and in order to limit
the demand on computational power, we use a = 1 indepen-
dent of the number of spatial dimensions in our simulations.
Additionally, the material contact parameters are kept con-
stant across all our simulations with kn = 2 × 105 [MT−2],
kt = 8 × 104 [MT−2], γn = γt = 75 [MT−1] corresponding to
a restitution coefficient of approximately 0.8, and μg = 0.5.

The numerical computation of the contact forces fol-
lows [35], with the only difference being that the velocities
on both sides of the contact point must be computed using
Eq. (A7).

5. Discrete element solver

The higher dimensional discrete element method algorithm
described above is implemented in the NDDEM Solver. This
parallelized code was used to produce the results contained
in this work. It can simulate particles in any number of di-
mension N > 0, limited only by computing capabilities. Due
to the nature of how hyperspheres fill hyperspace, in practical
applications of dense granular flows such as those examined
here, we are limited to N � 10 for computational reasons. In
the NDDEM Particle Visualisation Tool, users can explore this
space with either a keyboard or mouse combination, or in vir-
tual reality, where hand controls can be used to navigate in up
to seven dimensions. This is implemented using the Javascript
library three.js [36], and live versions of precalculated DEM
data can be accessed at Ref. [21].
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APPENDIX B: ORIENTATION TRACKING

Although it is not strictly necessary to track the hyper-
sphere orientation over time, as the laws of motion depend
only on the rotational velocity and not the orientation itself,
it is often useful to do so, in particular for visualization pur-

poses. An orthonormal tensor
⇒
A representing an orientation

reference frame is therefore attached to each hypersphere, and
is evolved over time according to Eq. (A7), leading to

d
⇒
A

dt
= −⇒

�
⇒
A,

⇒
A(t = 0) = ⇒

1 N , (B1)

with
⇒
1 N the identity matrix in dimension N . Although

Eq. (B1) has an analytical solution for constant
⇒
� through

matrix exponentiation, it needs to be solved numerically for
varying angular velocities. Time integration schemes do not

necessarily maintain the orthonormality of
⇒
A, which therefore

would lose this property over time due to numerical error

accumulation. As
⇒
A is not involved in solving the dynamics,

we decided against using an advanced numerical integration
that would have helped to preserve orthonormality [37], and
instead simply use a Gram-Schmidt process to orthonormalize
⇒
A at each time step.

Particle texturing

To visualize the orientation of a sphere, it is convenient
to attach a texture to the surface of the sphere which rotates
with the sphere. A similar approach is followed to visualize
the orientation of a hypersphere on its 3D intersection in
our visualization software. In contrast to conventional UV
mapping for 3D objects, it is not possible to generate fixed

textures which rotate with the object, as the boundary of a
hypersphere is in general not a 2D texture.

We define the boundary of the hyperspheres us-
ing hyperspherical coordinates comprising N − 1 angles
ϕ, θ1, θ2, . . . , θN−2, with the angles ϕ ∈ [0, 2π ] and θi ∈
[0, π ]. A “texturing” function maps this coordinate space to
the color space.

The process to texture a hypersphere for visualization in
the 3D space described above is therefore the following. First,
we define a coordinate system u, v on the 3-ball surface which
we want to color. By discretizing these coordinates into n
values each, we recover a set of 3D points in x1, x2, and x3.
The locations of the points in the remaining N − 3 dimensions
are set by our viewpoint. As these points are on the boundary
of the rotated hypersphere, we must bring them back to their
nonrotated frame to be able to calculate what color they each
correspond to, which can be achieved by multiplying them

by
⇒

A−1 =
⇒
AT . Finally we can color them using an appropriate

color mapping.
Since the space of colors has effectively only three di-

mensions [for example, (red, green, blue), or (hue, saturation,
value)], there is no bijection from the N − 1-dimensional hy-
persphere boundary to the color space for N > 4, therefore
some points of the hypersphere boundary must have the same
color for N > 4.

APPENDIX C: COARSE GRAINING

In order to obtain continuum fields from particle infor-
mation, it is often necessary in discrete element simulations
to coarse grain the numerical data, i.e., to perform spa-
tial averaging. We follow the established state-of-the-art
3D coarse-graining method [38–40] using a generalized
N-dimensional Lucy windowing function W of width w, sat-
isfying

∫
RN Wd−→x = 1, and with value at a distance d from

the coarse-graining point of

W
(

d

w

)
=

{
1

CN
× ( − 3

(
d
w

)4 + 8
(

d
w

)3 − 6
(

d
w

)2 + 1
)
, if d < w

0, otherwise
(C1)

with

CN = VN N

( −3

N + 4
+ 8

N + 3
− 6

N + 2
+ 1

N

)
. (C2)

However, since this paper focuses on flow with periodic boundaries in all directions but one, we here use the 1D Lucy function
in the nonperiodic direction and all the particles in the periodic directions.

This leads to the usual expression for the volume fraction φ, and the coarse-grained velocity
−→
vcg at the coarse-graining point−→

xcg:

φ(
−→
xcg) = 1

ρ

∑
p

W (|−→xp − −→
xcg|)mp, (C3)

ρφ(
−→
xcg)

−→
vcg(

−→
xcg) =

∑
p

W (|−→xp − −→
xcg|)mp−→vp , (C4)

where ρ is the particle density as defined above, and the
sum is over all the particles p at location

−→
xp with mass mp

and velocity
−→
vp . In a similar manner it is possible to ex-

tract additional fields such as the stresses, angular velocities,
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moments, kinetic energies, etc., with any number of dimen-
sions. These higher dimensional coarse-grained fields can

be visualized in the NDDEM Coarse Graining Visualisation
Tool.
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