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A B S T R A C T

High strain rate experiments of chains of glass beads under impact loading demonstrate that first failure
develops in either the first or second glass bead, depending on the impact velocity and associated stress
propagation. Motivated by this notion of ‘transition failure stress’ we present a series of three-
dimensional dynamic simulations of a 10 brittle elastic beads chain under impact of a stiffer elastic bar
using the material point method (MPM). The numerical simulation results show that, as observed in the
experiments, failure would first form in either the first or second closest brittle elastic bead to the im-
pacting bar, depending on the parametric ratio between an impact-induced maximum tensile stress to
fracture strength. Further non-dimensional analysis by varying materials and system parameters in the
simulations suggests that this transition failure stress exists universally in brittle materials under impact
loading.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Stress waves in granular materials have received extensive at-
tention [1–6]. In brittle granular materials, stress waves can create
further implications related to fabric collapse and grain crushing
[7–9]. They are pivotal in geoscience, for example in studying earth-
quakes fault gouges and meteoritic impacts [10,11], and in many
industries, including addressingmining andmineral processes, pe-
troleumproduction, and in pharmaceutics [12–14]. A key challenge
is that the propagation of stress waves is controlled by the discrete
nature of these materials and the dynamic behaviour of the indi-
vidual grains. Most studies have dealt with stress waves where
permanent irreversible effects such as damage and failure of thema-
terialmay be disregarded [1]. However, in brittle granularmaterials
the effect of permanent deformations on the propagation of stress
waves should be considered [7,8]. Grain crushing may occur after
the passing of strong stress waves, with fragments ‘rattling’ in the
free voids [15]; this enhances alterations of porosity, stiffness, and
permeability, all being crucial properties for predicting hydrome-
chanical response of geo-environmentalmodifications. For example,
Valdes et al. [16] revealed new forms of fragmentation waves in
systemswith intrinsically porous brittle grains, in the form of com-
paction bands propagating either periodically or intermittently. This
distinction in the modes of propagation has recently been ex-
plained by Guillard et al. [17] through a new heuristic lattice spring

model along with newly discovered dynamic compaction patterns
in brittle porous media.

Due to the effects of the interactions among contacting grains
under impact loading and the resulting damage, fracture and frag-
mentation of the individual grains, the propagation of stress wave
in multi-grain system can be very complicated. Hence, studying the
response of a chain of brittle spheres under impact loading can be
a simple and effective way to begin tackling this complicated
problem. Job et al. [18] conducted research on the law of solitary
wave propagating in the linear chain of beads using experiments
and numerical simulations. They proved that the characteristics of
solitary waves could be influenced by the mechanical properties of
the reflection boundary. Pal et al. [19] investigated the effects of plas-
ticity in wave propagation in a chain of elasto-plastic granular system
using the finite element method. The simulations revealed that
energy dissipation could lead to the formation andmerging of wave
trains, which have characteristics that are very different from those
of elastic chains. More recently, Wang and Nesterenko [20] studied,
experimentally and numerically, the attenuation of short and strongly
nonlinear stress waves in dissipative chains of alternatively ar-
ranged cylinders and spheres. They demonstrated that pulses in
systems with a smaller cylinder to sphere mass ratios attenuate
faster.

Motivated by the abovementioned problems, this paper ex-
plores the following question: in a chain of brittle beads, which bead
is likely to fail first under an impact-induced stress wave? This ques-
tion has beenmotivated by our recent impact tests on chains of glass
beads. Specifically, these tests show that it is often the second closest
bead to an impacting bar that fractures first among all the loaded
beads. The question here is whether this phenomenon merely
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depends on material heterogeneities, or whether it may also be dic-
tated by parameters such as impact velocity, duration of pulse or
friction between granular particles, etc.

To better understand our previous experiments, we perform
three-dimensional material point method (MPM) simulations to in-
vestigate the behaviour of a chain of 10 brittle elastic beads under
the impact of a stiffer bar. Following the setup of the experiments,
in the first numerical simulations, the mechanical properties of steel
have been assigned to the bars (Es = 210 GPa, ρs = 7800 kg/m3), while
those of glass have been assigned to the beads (Eg = 70 GPa,
ρg = 2500 kg/m3). The MPM is an extension of the particle-in-cell
(PIC) method in computational fluid dynamics [21] to computa-
tional solid dynamics [22–24]. The motivation of the development
was to study those problems with history-dependent internal state
variables, such as contact/impact, penetration/perforation and frag-
mentation without invoking master/slave nodes and global
remeshing. The MPM takes advantages of both Eulerian and La-
grangian methods. The mesh distortion problem in Lagrangian
method can also be avoided through mapping to a mesh that can
be controlled by the user [25]. Moreover, the MPM enables to nat-
urally identify contacts between grains and to address the mesh
distortion issues common in mesh-based methods due to the large
deformation of particles [26].

The purpose of this study is to understand how stress wave prop-
agation may induce damage in chains of brittle elastic grains under
impact and to investigate if the friction coefficient, the initial impact
velocity and the length of the impacting bar will affect the failure
patterns in the chain using the 3D MPM simulations. More impor-
tantly, we aim to explain how the position of the first failure of a
bead in the chain is influenced by the abovementioned factors as
a function of the material strength and impact velocity.

2. Methods and procedures

2.1. Impact experiments

The numerical study performed has been motivated by exper-
imental observations of the breaking of glass beads in a split

Hopkinson bar device. In these experiments, a horizontal row of 20
glass beads kept in a channel are impacted at high velocity by a steel
bar. The side view of the row of beads is recorded using a high-
speed camera at 50,000 fps and the beads undertaking fracture get
darker due to the increased diffusion of light where the glass is
damaged. Fig. 1a shows that at low impact velocity, the second closest
bead to the impacting bar is being severely damaged first, whereas
the first closest remains almost intact. When increasing the impact
velocity (Fig. 1b), we observe concurrent severe failure in the first
and second closest beads to the impacting bar. These experiments
suggest that theremay be a transition between the lowvelocity case,
where the first bead remains intact or slightly damaged, to a higher
velocity case, where it completely breaks. Repetitions of these ex-
periments provide similar outcomes, and therefore the reason for
this phenomenonmust mostly be related to deterministic material
properties. The focus of this paper is therefore to explore this tran-
sition computationally by varying deterministically both systemand
model parameters.

2.2. Numerical simulation

To understand the transition in the breaking behaviour of a chain
of glass beads upon impact, we perform numerical simulations using
the MPM available in Uintah software [27]. The proposed prob-
lems and the simulation results are visualised using VisIt [28]. Fig. 2
shows the simulated problemwhere a stiff elastic bar impacts a chain
of brittle elastic beads. As shown in the figure, the brittle elastic beads
of diameter D = 14 mm form a horizontal chain contacting the left
bar with 14mm diameter and 200mm length as a base. On the right
end of the beads chain, another stiff elastic bar that shares the same
length and diameter as the left bar impacts on the first elastic bead.
In the simulation, the elastic bars and beads are axially aligned. The
initial velocity of the impacting bar is 2.5 m/s. The friction coeffi-
cient of the beads in this reference simulation is 0.4.

In order to find whether the initial impact velocity, the length
of impacting bar and the friction coefficient will affect the dynamic
responses of the brittle elastic beads to impact loading, different
simulations are carried out, as shown in Table 1. The first row of
Table 1 illustrates the initial conditions of the reference simula-
tion. In the other simulations listed in the second to fourth rows,
the impact velocity, the length of impacting bar and the friction co-
efficient respectively are varied while keeping the other parameters
fixed. However, we observe that the dynamics is only slightly af-
fected by the friction coefficient. Indeed, this is confirmedwhen using
different friction coefficients, as outlined in the fourth row of Table 1
while keeping the other parameters the same as those in the

Fig. 1. Side view of the experimental impact tests of chains of glass beads in split
Hopkinson bar device, using high-speed camera at 50,000 fps, for impact velocity
of (a) 16 m/s and (b) 24 m/s. Darkening of a bead indicates complete splintering.

Fig. 2. Schematic of the simulated impact problem.

Table 1
Different simulation parameters.

Impact velocity (m/s) Length of impacting bar (mm) Friction coefficient

2.5 200 0.4
1.5 5 10 200 0.4
2.5 100 300 400 0.4
2.5 200 0 0.2 0.6
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reference simulation. This is mainly because the centres of the beads
are aligned along one straight line so that the limited relative fric-
tional motion has very small influence on themagnitude of the shear
stresses. In all the following simulations, we keep the friction co-
efficient equal to 0.4.

2.3. Mesh convergence study

Similar to other numerical methods, the results of the MPM can
be mesh size dependent [24,26,27]. A mesh convergence study is
thus performed first to find themesh size that leads to efficient simu-
lations with accurate results. In the mesh convergence study, a bar
with elastic properties of steel (Es = 210 GPa, ρs = 7800 kg/m3) im-
pacting a cylinder with elastic parameters of glass (Eg = 70 GPa,
ρg = 2500 kg/m3) is simulated as shown in Fig. 3a. The cylinder instead
of sphere target is chosen because the analytical solution is known
for this particular impact problem.

In this process, the cylindrical specimen is 140 mm long (same
length as that of the 10 brittle elastic beads chain problem) with
diameter of 14 mm. Other dimensions are kept the same with the
initial velocity of the impacting bar still being 2.5 m/s. In these test
simulations, cubic cells are used with four different mesh sizes,
namely 1.4mm, 0.7mm, 0.35mm and 0.175mm. There are twoma-
terial points along each direction with a total of 8 material points
in each 3D cell. Fig. 3b shows the stress history in the impact di-
rection (σy) of a selected point A on the central axis of the cylinder,
as shown in Fig. 3a, with different mesh sizes. In this figure, the sim-
ulation time t is normalised by the duration time that stress wave
propagates to the other end of the specimen and reflects back to
the impact surface: td = 2Lg/cg = 54 μs, where Lg is the length of the
cylinder and cg is the wave speed in the specimen.

The analytical solution of stress history at point A is also shown
in Fig. 3b. The simulated stress histories of point A are similar to the
analytical solution formesh sizes of 0.175mm, 0.35mmand0.7mm,

with the most refined mesh giving results closest to the analytical
solution, but needing a larger computation time.When themesh size
is 1.4 mm, however, the stress history at the chosen points is appar-
ently different from the other three cases as well as the analytical
solution. As a result, amesh size of 0.35mm is adopted in this study.

3. Results and discussion

3.1. Reference simulation

To allow easy comparison, a reference simulation is defined with
simulation parameters listed in the first row of Table 1. A simple
model of brittle elastic material is that it will fail when themaximum
principal stress σ1 exceeds the tensile strength of the material. In
order to find the failure location in the brittle elastic beads, we plot
in Fig. 4 the material points in colours if the maximum principal
stress σ1 of that material point is higher than the tensile strength
of glass, i.e., Rg = 33 MPa. The rest of the points take a grey colour.
Here, σmax represents the largest value of σ1 of all points in the beads
chain, while t is the simulation time when the snapshot is taken.
In this figure, the point is plotted in pink if its maximum principal
stress exceeds 300 MPa.

Fig. 4a–c shows the distribution of themaximumprincipal stress
in thebeads chain at timeof 12 μs, 178 μs and250 μs after the impact,
respectively. FromFig. 4a, it is clear to see that at time t = 12 μs, some
material points on the right of the second bead are above Rg, sug-
gesting that these could be the first failure points in the chain under
impact. These failure points first appear on the right surface of the
second sphere and then at the same area in the following spheres.
Eventually, a critical failure circle is formed from the second bead to
the seventh bead in similar locations. In the beginning, themaximum
principal stress of the first bead is less than 33MPa under the given
impact velocity, which means that generally no failure is expected
to occur in the first sphere under the current loading conditions.

Fig. 3. (a) Schematic of the mesh convergence study problem. (b) History of stress in the impact direction (σy) at point A with different mesh sizes.
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Fig. 5a illustrates the largest value of the maximum principal
stress in the various beads in the reference simulation. Here the grey
line represents the first bead located closest to the impacting bar,
at the right of the chain, while the black line represents the tenth
bead located at the left end of the chain. Time is normalised by tsp,
the impact bar/bead separation time tsp = 2Ls/cs = 80 μs, the time
needed for the stress wave to travel a distance equivalent to twice
the length of the impacting bar, where Ls is the length of the im-
pacting bar and cs is the wave speed in steel.

It is clear from Fig. 5a that the second elastic bead is the first to
reach the tensile strength of glass (33 MPa) and thus is the first ex-
pected to fail in chain of brittle glass beads. We believe the very
high maximum principal stress in the second glass bead is mainly
due to the tensile stress generated as reflected stress at the free
surface of the glass bead. On the other hand, the tensile stress re-
flected at the free surface of the first glass beadwasmostly cancelled
by the incoming compressive stress induced by the impactor. In ad-
dition, it shows that at the beginning of the simulation, the
magnitude of themaximum principal stress in the first bead is much
lower than that in the other spheres, except for the left three. More-
over, even if some particles reach the failure criteria in the left three
spheres, it is only a local phenomenon that does not form the crit-
ical failure circle as shown in Fig. 4c. Also note that if the bead
material has a tensile stress Rg below 25.6 MPa, then the first bead
would be expected to fail first. Otherwise, the second bead is always
the first damaged sphere in the chain. We then define a ‘transi-
tion failure stress’ σt, which determines whether the first or the
second bead would fail first under the given loading conditions. In
this simulation, σt = 25.6 MPa.

3.2. Effect of impact velocity

Fig. 6 shows the distributions of the maximum principal stresses
along the chain under different impact velocities at time of 210 μs
after impact. When the impact velocity is 1.5 m/s, due to the low

impact velocity, the magnitude of the maximum principal stress in
the beads is small. As a consequence, we can only find the critical
failure circle in the second bead. No critical failure circles form in
the other beads, as shown in Fig. 6a. Fig. 6c demonstrates the dis-
tribution of the maximum principal stress along the chain under
the 5 m/s impact velocity. Similar to the reference simulation, the
critical failure circle can form from the second closest bead first even
though the first bead sustains the highest maximum principal stress
near the impact location immediately after impact. In fact, even the
left three beads can fail under such high impact velocity. Further-
more, the critical failure circle can also form in the first bead after
a period of time. However, during the entire simulation, the
maximum principal stress in the first bead is still much lower than
that in the other spheres. Fig. 6d depicts the distribution of the
maximum principal stress in the chain under the 10m/s impact ve-
locity. In this case, a few internal points fail. The other phenomena
are similar to those in the 5 m/s impact velocity simulation. It has
to be pointed out that although many new failure locations appear
due to the higher magnitude of the stress wave, the final critical
failure circle still appears at the second closest bead first, which is
the same as in all other simulations.

When the impact velocity increases to 5m/s or 10m/s, it appears
that the bottom of each brittle elastic bead can also be damaged
due to the high magnitude of tensile stress generated by the high
velocity impact at the beginning of the simulation. The failure points
will appear at the same locations of the following brittle elastic beads,
one by one, with the subsequent propagation of the stress wave.

Fig. 5b shows the largest value of the maximum principal stress
in the various beads under the impact velocity of 10m/s. Here, time
is also normalised by tsp. Similar to the reference simulation, the
maximum principal stress of the first bead is much lower than that
in the other spheres, except for the initial short simulation period.
The corresponding transition failure stress is 245.6 MPa. Adopting
a tensile strength of 33MPa, some local points in the first bead will
fail first under this impact velocity.

Fig. 4. The distributions of the maximum principal stress in a chain of brittle elastic beads in the reference simulation at different times.
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As can be seen from the history of the largest maximum prin-
cipal stress of the various beads shown in Fig. 5, immediately after
the impact, the first beadwill experience some relatively small tensile
stresses first. Once the stress waves reach the second bead, much
larger tensile stresses will be developedwithin it. As a result, whether
the first or the second closest bead to the impacting bar will fail
first depends on the maximum tensile stress level developed in the
various beads and the strength of thematerial. If the tensile strength
of the material is above this transition failure stress, then the second
brittle elastic bead will fail first. Otherwise, it will be the first bead
that experiences failure first. Fig. 7 shows the transition failure stress
as a function of the impact velocity in the chain of brittle elastic
beads. It clearly shows that the transition failure stress increases
slowly when the impact velocity is small until it reaches 5m/s. After
that, the transition failure stress increases dramatically and almost
linearly when the impact velocity is 12.5 m/s. Then the increasing

trend slows down when the impact velocity ranges from 12.5 m/s
to 17.5 m/s. It will dramatically increase again as the impact veloc-
ity increases further.

To investigate whether the observed characteristics of this tran-
sition failure stress are universal, we show in Fig. 8 the non-
dimensional results for simulations with various material properties.
Three groups of simulations are primarily presented. Real materi-
al properties of glass and steel (Eg = 70 GPa, ρg = 2500 kg/m3,
Es = 210 GPa, ρs = 7800 kg/m3) are used in the first group (Group 1).
For the second group (Group 2), the Young’s modulus of the beads
and bars are quadrupled (4Eg = 280 GPa, 4Es = 840 GPa) while keeping
other properties unchanged. Similarly, the density of the beads and
bars are quadrupled (4ρg = 10000 kg/m3, 4ρs = 31200 kg/m3) while
keeping other properties unchanged in the third group (Group 3).
Fig. 8 reports the non-dimensional analysis results, where the tran-
sition failure stress is normalised by the Young’s modulus E of the

Fig. 5. Time history of the largest value of the maximum principal stress in the various beads in the chain under impact velocity of (a) 2.5 m/s; (b) 10 m/s.
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material under impact, while the impact velocity is normalised by
the elastic wave velocity c of the material under impact. It shows
that the simulation results of the three different groups well col-
lapse into one curve, which indicates that the characteristics of this

transition failure stress will not change as long as the ratios of the
Young’s modulus and density of the impactor and the target are kept
unchanged. The purple line in Fig. 8 represents the average results
from these three groups.

Fig. 6. The distribution of the maximum principal stress of a chain of spherical beads at time 210 μs under impact velocity of (a) 1.5 m/s, (b) 2.5 m/s, (c) 5 m/s and
(d) 10 m/s.

Fig. 7. Transition failure stress vs. impact velocity.
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Additionally, two more groups of simulations with only a single
change made to either the Young’s modulus or the density of the
beads are shown in Fig. 8. For the case where only the density
changes (Group 4), the normalised transition failure stress is close
to the average line of the previous three groups of simulations, es-
pecially when the normalised impact velocity is small. However, if
we only change the Young’s modulus of the granular chain (Group
5), the normalised transition failure stresses are well above the
average values from Groups 1–3, as also shown in Fig. 8. This further
suggests that the characteristics of the transition failure stress are
dependent on the ratios of the Young’s modulus and density of both
the impactor and the target.

3.3. Effect of the length of impacting bar

Numerical simulations are carried out to investigate the effect of
impulsedurationon thedynamic responses of thebrittle elastic beads
by varying the length of the impacting bar between 100mm and
400mm, as outlined in the third row of Table 1. Since the magni-
tudeof the initial impulse is independentonthe lengthof the impacting
bar, the stress histories will be exactly the same in these four simu-
lations until the unloading of the stress wave starts, i.e. after about
40 μs in the 100mm length impacting bar simulation. Indeed, under
impact velocity of 2.5m/s, the transition failure stress in all these four
simulations is 25.6MPaand is not affectedby the changeof the length
of impacting bar. As can be foreseeable, if the length of the impact-
ing bar continues to decrease, due to the reduction of the loading
duration, the transition failure stress may change.

The distributions of themaximumprincipal stress of brittle elastic
beads chain impacted by the right bar of different lengths with
impact velocity of 2.5 m/s at time of 250 μs are shown in Fig. 9.
Despite the similar stress distributions at the starting stage, themag-
nitudes of the maximum principal stress are obviously different in
these four simulations at the later stages, such as at time 250 μs.
As can be seen in Fig. 9a, the critical failure circle can only form from
the second to the fourth brittle elastic spheres when the length of
the impacting bar is 100 mm. When the impacting bar is 300 mm
long, the critical failure circle can also be found in the eighth bead
as shown in Fig. 9c. Furthermore, as can be seen in Fig. 9c, after a
long period of time, some points near the impact location of the
first bead also fail when the impacting bar is 300 mm. When the
impacting bar increases to 400 mm long, similar phenomenon can
be found as shown in Fig. 9d.

3.4. Comparison simulations – experiments

The previous simulations indicate that there exists a transition
for a given material from the fracture of the second closest bead
to the impactor to the fracture of the first one as impact velocity
is increased. This is indeedwhatwas observed experimentally (Fig. 1),
although the experimental transition velocity does not quantita-
tively match the numerical one. The reason of this discrepancy is
mainly due to the fact that the numerical study focused only on the
first fracture point in the bead (i.e. the first material point reach-
ing the material fracture strength). Experimentally, this first fracture
instant cannot be easily detected and only considerably damaged
beads will be evidenced, which can therefore increase the appar-
ent transition velocity measured in the experiment. Moreover, there
is probabilistic variability in the material properties of the beads
used in experiment, leading to a more scattered transition, such as
small variability in theWeibullian strength of the various glass beads.
For example, the real fracture strength of the individual glass beads
can be different from the single value of 33 MPa used in the sim-
ulation. Hence, more comprehensive experiments are needed for
closer comparisons with the simulations, which may lead to refin-
ing the numerical model.

4. Conclusions

In this study, a three dimensional simulation of a chain of 10
brittle elastic beads under impact loading is performed using the
Material Point Method. The simulation results show that after some
time, the magnitude of the maximum principal stress in the closest
bead to the impacting bar may be lower than that in the second
and the rest of the beads. As a result, whether the first or second
brittle elastic bead fails first is dependent on the maximum tensile
stress level developed in the various beads and the tensile strength
of thematerial. The notion of ‘transition failure stress’ is thus defined
in this study. If the fracture strength of the material is above this
transition failure stress, then the second bead will fail first. Other-
wise, it is the first bead that will fail first. Non-dimensional analysis
of the proposed transition failure stress indicates that the experi-
mentally observed failure evolution process is universal as long as
the ratios of the Young’s modulus and density of the impactor and
the target are kept unchanged. The existence of a transition failure
stress in a chain of brittle elastic glass beads, as well as the impor-
tant effect of the velocity and length of the impacting bar on the

Fig. 8. Non-dimensional transition failure stress vs. non-dimensional impact velocity.
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critical failure circle, provide an important framework for the study
of more realistic situations, e.g. sand protection of building against
impact or bulletproof vests.
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