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Origin of a depth-independent drag force induced by stirring in granular media
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Aix-Marseille Université, CNRS, IUSTI UMR 7343, 13453 Marseille, France
(Received 3 October 2014; published 2 February 2015)

Experiments have shown that when a horizontal cylinder rotates around the vertical axis in a granular medium,
the drag force in the stationary regime becomes independent of the depth, in contradiction with the frictional
picture stipulating that the drag should be proportional to the hydrostatic pressure. The goal of this study is to
understand the origin of this depth independence of the granular drag. Intensive numerical simulations using the
discrete element method are performed giving access to the stress distribution in the packing during the rotation
of the cylinder. It is shown that the rotation induces a strong anisotropy in the stress distribution, leading to the
formation of arches that screen the hydrostatic pressure in the vicinity of the cylinder and create a bubble of low
pressure.
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I. INTRODUCTION

Dragging a plow in soil [1,2], walking or riding on sand
[3,4], and mixing grains with a stirrer [5,6] are examples
of situations involving the displacement of an object in a
granular medium. Understanding the forces exerted on the
object and the flow around it are important issues that have been
extensively addressed in fluid mechanics when the surrounding
fluid is a Newtonian liquid, but these issues remain open in
the case of a granular medium. One difficulty comes from the
complex rheology of granular media, which belong to the yield
stress fluid family. The transition between a static or flowing
medium can be expressed using a friction criterion: flow is
possible only when the shear stress reaches a critical value,
i.e., when the shear stress is equal to the normal stress times a
friction coefficient.

When an obstacle moves in a granular medium, a drag force
develops, which has been studied in different configurations.
The drag force has been measured for partially [2,7–10] or fully
immersed [6,11–14] objects pulled in a granular medium, or
when an object penetrates a granular medium [15–19]. One
major result is that in the quasistatic regime at low speed, the
drag can be described by a friction criterion: it is proportional
to the average pressure around the object. In the case of an
obstacle moving at a depth h in a granular packing, the drag
therefore increases linearly with h. This linear dependence has
been observed in many studies and is a robust result.

However, a recent study [13] shows that the situation is
more complex in a rotating configuration, when the moving
object travels again and again in the same path. In this study,
the evolution of the drag force is measured on a horizontal
cylinder, which rotates in a packing of grains around a vertical
axis [Fig. 1(a)]. During the first half-turn, the measured drag
force increases linearly with the depth at which the cylinder
is rotating, as expected from the classical frictional argument.
However, after the first half-turn, the drag dramatically drops
and reaches a stationary value, which is then independent of
the depth. Everything happens as if the rotating cylinder no
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longer feels the weight of the column of grains above it.
The continuous rotation of the cylinder leads to a pressure
screening effect. This effect has been experimentally studied,
and a scaling law for the stationary drag has been evidenced.
However, the origin of the phenomenon and the existence of a
structure in the packing that could induce such a pressure
screening effect are still speculative. The purpose of this
paper is to study the same geometry using discrete numerical
simulations, which give access to the stress distribution within
the packing, and to understand the physical origin of the
depth-independent drag force.

The numerical method and the difficulties inherent to the
three-dimensional configuration are described first. We then
check that the simulations correctly reproduce the experimen-
tally observed scaling for the drag force. In a second step, the
pressure distribution and the stress anisotropy are analyzed,
showing that during the rotation, a bubble of low pressure
develops around the cylinder, induced by the redirection of the
vertical stress through an arching phenomenon.

II. CONFIGURATION AND NUMERICAL METHOD

The configuration of interest is shown in Fig. 1(a). A
cylinder of diameter D and length L is put at a depth h in
a packing of beads of diameter d and density ρg . The cylinder
then rotates slowly around the vertical axis z experiencing
a torque M. Assuming that each half of the cylinder expe-
riences a force Fdrag/2, the drag force is then computed by
Fdrag = 4M/L. The experiments in [13] have shown that,
in this configuration, the drag force dramatically decreases
after half a turn and reaches a stationary value after a few
rotations. In this stationary state, the experiments reveal that
the drag force is independent of the depth h and is given by
the following scaling:

Fdrag � DL ρgL f (L/D). (1)

The drag is the product of the surface of the cylinder (DL)
times a characteristic pressure (ρgL, ρ being the density of
the granular medium) times a coefficient depending on the
aspect ratio f (L/D).

To simulate this phenomenon with a discrete element
method (DEM), we used the open source software LIGGGHTS

[21]. The code computes the dynamics of soft frictional

1539-3755/2015/91(2)/022201(6) 022201-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.91.022201


GUILLARD, FORTERRE, AND POULIQUEN PHYSICAL REVIEW E 91, 022201 (2015)

h

3.3d
130d

50d

20d

Fdrag
2

Fdrag
2

(a)

106 107 108 109

E(Pa)
10-7

10-6

10-5

10-4

10-3

τ
(s

)

τ
τcol

(d)
t

n

FFt

(b)

F
n

z

n

tk
k

n
t

(c) g

FIG. 1. (Color online) (a) Sketch of the configuration: a cylinder
rotates around the vertical axis at a depth h in a granular packing.
(b) Sketch of the force interaction used in the DEM simulation: δn

is the normal overlap, δt is the relative tangential displacement since
the beginning of the contact. (c) Contact force model. (d) Value of
the time step τ used in the simulation as a function of Young’s
modulus E. The dotted line τcol is the theoretical collision time
estimated by the formula τcol = 2.87( 2m2(1−ν2)2

max(vrel) E2 d
)1/5 [20].

particles, the interaction forces between the particles being
described in Figs. 1(b) and 1(c). For two particles of diameter
d and mass m separated by a distance r , the force is zero
when r > d. For r < d, one can define the normal overlap
δn = d − r and the tangential overlap δt , which is the relative
tangential displacement of the particles since the beginning of
the contact. The normal part of the force Fn and the tangential
part Ft are given by

Fn = knδn + γnv
rel
n ,

Ft = ktδt + γtv
rel
t if |Ft | < μg |Fn| ,

= μg |Fn| otherwise,

(2)

in which vrel
n and vrel

t are the normal and tangential components
of the relative velocity of the particles at the contact point. The
constant μg is the friction coefficient, and the parameters kn,
kt , γn, and γt are functions of the overlaps δn and δt , and of the
Young’s modulus E, the Poisson ratio ν, and the coefficient
of restitution e of the beads [22,23]. Their expressions are
given in Table I. The particles used in the simulation are
monodispersed with diameter d = 1.5 mm and density equal
to ρg = 2.5 g cm−3. For the material properties, we choose

a Poisson ratio equal to ν = 0.45, a coefficient of restitution
e = 0.6, and a coefficient of friction μg = 0.5. For Young’s
modulus E, different values have been used, as it turns out
that stiff particles are necessary to reproduce the experimental
observation. This point will be discussed later. Values for
Young’s modulus are 5 MPa � E � 1.5 GPa.

A major difficulty to simulate this configuration is the CPU
computing time. The geometry is three-dimensional and the
phenomenon has to be observed in a large enough container
to avoid the Janssen effect, which requires a large number
of particles. In our simulations, the height and diameter of
the container are, respectively, 130 and 50 particle diameters,
which represent a total of 350 000 particles. The intensive
computations have been carried out on the parallel computers
of IDRIS.

The typical procedure for a simulation is as follows. Grains
are first released from the top in the box under gravity. The
box is filled up to the level h. The horizontal cylinder is then
placed at this position before finishing the filling procedure up
to the top of the container. The cylinder itself is discretized
into triangles (32 facets on the perimeter, which makes 832
simulated triangles). The cylinder rotates at a constant angular
speed equal to 0.5 rotation per second, which is faster than
in the experiments (typically two rotations per minute) but
remains in the quasistatic regime, the highest inertial number
being of the order of 0.02.

The total simulation lasts approximately 12 s of real
time, which corresponds to 20 rotations and is enough to
reach the stationary regime. One run takes roughly one
week on 32 processors for the highest Young’s modulus.
From the simulations, one has access to all the interparticle
forces, as well as velocities and positions of all particles. A
postprocessing then provides the mean equivalent drag force
experienced on the cylinder as well as the stress tensor σ at
any location in the packing.

III. DRAG FORCE ON THE CYLINDER

The simulations were first performed with a stiffness
E = 5 MPa, a value well below the experimental one but
typically used in DEM simulations to minimize the compu-
tation time. In many configurations, the use of artificially
soft particles seems to have little or no effect on the results
and often provides quantitative agreement with experimental
measurements [24]. Unfortunately, this is not the case in
our configuration. Results of the simulations computed with

TABLE I. Expressions and values of the coefficients in the contact force model used in the
simulation. Here β = ln(e)√

ln2(e)+π2
, and m = ρgπd3/6 is the mass of each grain. Values are given for

E = 1.5 GPa, ν = 0.45, e = 0.6, and d = 1.5 mm.

Coefficient Particle-particle Value Particle-cylinder Value
expression expression

kn/
√

δn = k∗
n

E

3(1−ν2)

√
d 24 × 106 N m− 3

2 2E

3(1−ν2)

√
d/2 34 × 107 N m− 3

2

kt/
√

δn = k∗
t 3 1−ν

2−ν
k∗

n 26 × 106 N m− 3
2 3 1−ν

2−ν
k∗

n 37 × 106 N m− 3
2

γn/δ
1/4
n −

√
5
2 β

√
mk∗

n 2.6 kg s−1 m− 1
4 −√

5β

√√
2mk∗

n 4.4 kg s−1 m− 1
4

γt/δ
1/4
t −

√
5
3 β

√
mk∗

t 2.7 kg s−1 m− 1
4 −

√
10
3 β

√√
2mk∗

t 4.6 kg s−1 m− 1
4
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FIG. 2. (Color online) Drag force as a function of the number
of rotations for different depth h: (a) simulations with E = 5 MPa,
(b) E = 1.5 GPa.

E = 5 MPa are shown in Fig. 2(a), where the dimensionless
drag force is plotted as a function of the number of rotations
for different depths h of the cylinder.

For each curve, the drag force decreases after half a turn
and reaches a stationary value. However, the drag in the
stationary state depends on the depth h, which is in qualitative
contradiction with the experiments. To understand the origin
of this discrepancy, several tests have been performed, by
changing the size of the system (the system was perhaps
too small), by changing the boundary conditions (use of
frictional or frictionless walls), or by adding in the simulation
a central vertical rod (which is present in the experiments
to hold the cylinder). None of these modifications improved
the agreement. It turns out that the source of the discrepancy
was the choice of a too low stiffness for the particles. This
is shown in Fig. 2(b), which gives the results of a series of
simulations made in the same condition as in Fig. 2(a) but
with Young’s modulus 300 times higher, E = 1.5 GPa. With
stiffer particles, the drag force after the first half-turn exhibits a
more pronounced decrease, and the stationary values are now
identical for the different depths h [Fig. 2(b)]. We therefore
find in the DEM simulation the same striking observation as in
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FIG. 3. (Color online) Drag force during the first half-rotation
(circles) and in the stationary state (squares) as a function of
the dimensionless Young’s modulus. h/L = 3.9. Typical Young’s
modulus for glass is E ∼ 70 GPa (E∗ ∼ 2 × 109).

the experiment, i.e., a depth-independent drag on a rotating
cylinder. This first result indicates that the drag reduction
requires hard enough grains.

To more precisely determine the minimum stiffness nec-
essary to obtain an agreement with the experiment, we
performed the simulation at a fixed depth h/L = 3.7 but
for different Young’s modulus E. Note that increasing the
stiffness requires us to reduce the time step to properly
solve the interaction between particles [see Fig. 1(d)], thus
increasing the simulation time. The influence of E is plotted
in Fig. 3. The circles represent the drag force averaged over the
first half-rotation as a function of the dimensionless Young’s
modulus E∗ = E/ρggd, whereas the squares represent the
drag in the stationary regime. The stiffness has no influence
on the initial drag force, but it strongly modifies the value
in the stationary regime. The computed drag decreases when
increasing E∗ and reaches a plateau for E∗ > 106. This figure
thus shows that, in order to find the experimental results, DEM
simulations have to be performed with rigid enough particles,
i.e., for E∗ > 106. All the results presented in the following
are then performed with a Young’s modulus E = 1.5 × 109 Pa
(E∗ = 4 × 107).

We can now more quantitatively compare the simulations
and the experiments for E = 1.5 GPa. Toward that end, new
experiments have been done to match as closely as possible
the size of the container, the size of the cylinder, and the
size of the grains between the experiments and numerical
simulations. The comparison is made for cylinders with an
aspect ratio L/D = 6 in simulations and L/D = 7.5 in exper-
iments, and with a grain size d = 1.5 mm in simulations and
d = 1.3 mm in experiments. The container has a diameter of
115d in experiments and 50d in simulations. The glass beads
used typically have a Young’s modulus of 70 GPa, a Poisson
ratio of 0.25, a restitution coefficient of 0.9, and a friction
coefficient of 0.3. Before an experiment, the granular medium
is vigorously stirred and slightly compacted by lateral taps on
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FIG. 4. (Color online) Drag force as a function of the depth h

measured in experiments (diamonds) and simulations (circles), during
the first half-turn (open symbols) and in the stationary state (filled
symbols).

the container. The cylinder is then plunged at its position and
the rotation is started. Figure 4 shows how the drag force during
the first half-turn (open symbols) and during the stationary
state (filled symbols) varies with the depth h of the cylinder
in both the DEM simulations (circles) and in experiments
(square). In this plot, the drag is made dimensionless using
DLρgL and the depth using L, the length of the cylinder. The
figure shows a reasonable agreement between experiments and
simulations for both the initial and the stationary drag. Using
stiff enough particles in the simulations, it is thus possible to
quantitatively reproduce the depth-independent drag observed
when stirring a granular medium.

IV. DISCUSSION ON THE ORIGIN OF THE
DEPTH-INDEPENDENT DRAG FORCE

We can now analyze in the simulations how the stress
distributes in the packing, and try to understand the origin
of the depth-independent drag phenomenon. Toward that
end, the stress tensor σ is calculated at any point using the
coarse-graining process proposed by Glasser et al. [25,26].
From the discrete positions xi of all the Np particles and the
interparticle forces fij between particles i and j , the stress at
a point x is computed by averaging over a sphere of radius
R = 2d centered at point x:

σ (x) = 1

2

Np,Np∑
i,j,i �=j

fij ⊗ xij W(xij ,x), (3)

where xij = xj − xi andW is the fraction of the contact vector
xij inside the averaging region [25,26]. The stress tensor is
computed on a grid of 10 × 10 × 40 points in the simulation
space. To analyze the structure of the stress distribution
attached to the cylinder, the stress tensor is then time-averaged
in the frame rotating with the cylinder.

From the knowledge of the whole stress tensor, we first
analyze the pressure distribution, the pressure P being defined
from the trace of the stress tensor P = Tr(σ )/3. Figures 5(a)
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FIG. 5. (Color online) (a) Surfaces of constant pressure in the
frame moving with the rotating cylinder during the first half-turn.
(b) Same plot in the steady state. Only the central region is shown,
the bottom and top disks indicating the actual size of the container.
(c) Evolution of the volume fraction φ along the central vertical axis
for both the first half-turn (dashed line) and the stationary state (solid
line). h/L = 3.9.

and 5(b) show the surfaces of constant pressure in the frame
moving with the cylinder during the first half-turn [Fig. 5(a)]
and in the stationary state [Fig. 5(b)]. During the first half-
turn, the pressure above the cylinder follows the hydrostatic
distribution: it increases linearly with depth. In the vicinity of
the cylinder, one observes a region of high (low) pressure at
the front (back) of the rotating cylinder. The striking result
shown in Fig. 5(b) is that after several rotations, the pressure
distribution is strongly modified. The level of pressure above
the cylinder is much lower than during the first half-turn, and
a bubble of low pressure has been created.

To further investigate the pressure distribution in the
stationary regime, the variation of the pressure along the
central axis Oz is plotted in Fig. 6(a). The different curves
correspond to simulations performed at different depths h of
the cylinder, the position of the cylinder being indicated by
a disk. At large depth (for h/L > 2), all the curves present a
similar shape. The pressure first increases quasilinearly from
the surface in a hydrostatic way, then drops to a minimum
before increasing again when reaching the position of the
cylinder. Below the cylinder, the pressure keeps increasing
and eventually recovers the hydrostatic distribution far from
the cylinder.

Two important points should be noted. First, the pressure at
the level of the cylinder reaches a plateau when increasing the
depth [the disks reach a plateau in Fig. 6(a)]. The observation
that the drag force becomes independent of the depth is then
due to the change of the pressure level around the cylinder,
which itself becomes independent of depth. Secondly, the size
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FIG. 6. (Color online) (a) Pressure distribution along the vertical
central axis Oz for different depths h of the cylinder. The disks
indicate the pressure level at the vertical positions of the cylinders.
(b) Scaled size of the low-pressure bubble over the cylinder, defined
as the distance between the local minimum of pressure above the
cylinder zdrop and the position of the cylinder h, as a function of the
scaled depth h/L.

of the low-pressure bubble seems to be roughly constant. This
can be seen by plotting the distance between the minimum of
pressure and the cylinder for the different depths [Fig. 6(b)].
The minimum is at a distance of the order of the length of the
cylinder. From this analysis, we conclude that the continuous
rotation of the cylinder changes the stress distribution by
creating a bubble of low pressure above the cylinder whose
extension is of the order of the length of the rotating object.
In the stationary regime, regardless of its depth, the cylinder
rotates in a region where the pressure is of order ρgL, which
explains why the drag force also scales as ρgL [Eq. (1)]. This
is also coherent with the experimental observation that the
drag starts to saturate when the cylinder reaches a depth of the
order of its length (h � L) [13].

To understand how such a low-pressure structure can
develop and remain stable in the packing, we first investigate
the solid volume fraction φ, looking for some low-density
regions. The volume fraction at any point x is computed from
the grain position by averaging in a sphere of radius R = 2d

around x:

φ(x) = m
4
3πR3 ρg

Np∑
i=1

W̃(|xi − x|), (4)

where W̃ is the fraction of the volume of particle i inside
the averaging region. Figure 5(c) shows the profile of the
volume fraction along the Oz axis averaged during the first
half-rotation and in the stationary state. The two distributions
are almost indistinguishable, showing that the volume fraction
around the cylinder remains roughly the same during the whole
simulation. In particular, there is no evidence of a region of
lower volume fraction above the cylinder in the stationary
state. Therefore, the observed low-pressure bubble above the
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FIG. 7. (Color online) Visualisation of the eigendirections of the
stress tensor. The principal axes of the ellipsoids coincide with the
principal direction of the stress tensor (see text), and their color gives
the pressure. (a) First half-turn, (b) steady state.

cylinder cannot be explained by a change in the volume
fraction during the rotations.

To go further, we analyze the anisotropy of the stress tensor
and the orientation of its principal axes. Toward that end, at
each point of the packing an ellipsoid is plotted, whose axes
give the orientation of the principal axes of the local stress
tensor (Fig. 7). The ellipsoid at a point O is computed from
the local stress tensor σ as the set of points M such that the
vector OM is equal to

OM = σ · n
P

, (5)

where the unit vector n describes a sphere of radius 1. Using
this visualization, the three orthogonal directions of the long,
medium, and small axes of the ellipsoids give, respectively,
the major, medium, and minor principal directions of the stress
tensor. The normalization with the pressure provides ellipsoids
of the same mean size, which help in visualizing the variation
of the principal directions in the packing. However, in order to
get the information about the intensity of the local stress, the
ellipsoids in Fig. 7 are colored according to the pressure value.

Figure 7(a) shows the structure of the stress tensor averaged
during the first half-rotation. In this initial state, the major axes
are mainly oriented vertically along the gravity, except close to
the end of the rotating cylinder, where the major axes seem to
align in the horizontal plane following the direction of rotation.
The picture is dramatically different in the stationary state after
a few rotations, as shown in Fig. 7(b). The main observation is
the formation of an archlike structure, with the ellipsoids above
the cylinder tilted toward the sides. This change of direction
in the major axis of the stress tensor explains why the
hydrostatic stress is redistributed away from the cylinder, and
that a region of low pressure develops just above the cylinder.
At a large depth below the cylinder, the major direction
approaches again the vertical. From this analysis, one can
then conclude that, as suggested by Guillard et al. [13], the
continuous rotation of the cylinder induces an anisotropic
structure in the packing, with the formation of arches that
screen the hydrostatic pressure.

In a wide container such as in the experiments, the low-
pressure central region must be balanced by an overpressure
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far away from the rotating cylinder to satisfy the vertical
force balance. However, in the simulations, the diameter of
the container is only 2.5 times the cylinder length, and part of
the stress redistribution is carried by the side walls (typically
in the steady state once the bubble is formed, 45% of the total
mass of the grains above the cylinder is carried by the walls).
Yet it is important to emphasize that side walls are not at the
origin of the pressure screening effect: experiments carried out
for a large range of container diameter to cylinder length ratio
exhibit the same depth-independent drag phenomenon [13].

V. CONCLUSION

In conclusion, we have performed intensive DEM simula-
tions of a cylinder rotating in a granular medium. To recover
the experimental scaling and the observations that the drag
force on the cylinder becomes independent of the depth in
the stationary regime, the simulations have to be done with
very stiff particles, much stiffer than those classically used
in molecular-dynamics simulations. This indicates that the
phenomenon exists in the limit of rigid particles, and is weaker
with soft particles. Having access to the averaged stress tensor,
we have been able to show that the rotation of the cylinder
induces a redirection of the principal directions of the stress
away from the cylinder, which can be qualified as an arching
phenomenon. This anisotropy creates a bubble of low pressure
above the cylinder, at a value of the order of ρgL. The cylinder

moves in this low-pressure region, which explains why the
drag force is dramatically low and independent of depth.
This self-screening effect is reminiscent of what is observed
close to the exit of a silo, where a similar pattern for the
stress distribution is found [27]. The principal stress axes are
redirected away from the outlet, leading to a low-pressure
region above the exit and a flow rate that is independent of
the depth. An interesting point is that in the case of the silo,
the structure arises from a macroscopic mean flow, and the
redistribution of the stress can be captured within a continuous
description based on a frictional rheology [27,28]. However,
modeling the depth-independent drag observed when stirring
a granular medium seems more challenging. The difference
between the first half-turn and the stationary state means that
the structure takes time to form, and that some kind of memory
in the texture has to be taken into account, which is not included
in the simple continuous description used for the silo.
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