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In order to better understand the mechanism governing segregation in dense granular
flows, the force experienced by a large particle embedded in a granular flow made
of small particles is studied using discrete numerical simulations. Accurate force
measurements have been obtained in a large range of flow parameters by trapping
the large particle in a harmonic potential well to mimic an optical tweezer. Results
show that positive or negative segregation lift forces (perpendicular to the shear) exist
depending on the stress inhomogeneity. An empirical expression of the segregation
force is proposed as a sum of a term proportional to the gradient of pressure and
a term proportional to the gradient of shear stress, which both depend on the local
friction and particle size ratio.
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1. Introduction

A rich phenomenology is observed owing to segregation occurring in flows of
polydispersed granular material. When flowing, large and small particles have a
tendency to migrate in different regions, giving rise to complex patterns such as
stripes and bands in rotating drums (Hill, Caprihan & Kakalios 1997; Aranson &
Tsimring 2006), levees and fingers at the front of avalanches (Pouliquen, Delour &
Savage 1997; Félix & Thomas 2004b; Woodhouse et al. 2012), and channels in silo
flows (Fan & Hill 2011). This tendency to segregate is a major source of problems
in many industrial applications involving mixing processes, and is at the origin of
geomorphological patterns observed in deposits of rock avalanches, landslides or
pyroclastic flows (Kokelaar et al. 2014).

A lot of effort has been devoted to the development of a theoretical framework
able to describe the flow of polydispersed material. In the case of dilute collisional
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granular flows, segregation can be predicted within the framework of the kinetic
theory for various concentrations of the different species (Jenkins & Mancini 1989;
Brey, Ruiz-Montero & Moreno 2005). This approach, valid in the dilute regime, fails
to predict qualitatively the direction of segregation in the dense regime. Savage &
Lun (1988), in a pioneering work, proposed a kinetic sieving mechanism to explain
segregation in the dense regime for flows down an inclined plane. The picture is the
following: during the flow, the fluctuating motion of the particles creates holes, and
large grains can fall only in large holes, while small grains can fall in both small and
large holes. This asymmetry in the exchange of grains between layers explains the
rising of large particles at the free surface of the flow. This kinetic sieving process
has been further developed in the context of mixture theory, where the partial stress
carried by the different constituents of the mixture depends on their sizes, leading
to segregation fluxes. Flows down inclined planes (Marks, Rognon & Einav 2011),
segregation at the front of avalanches (Thornton & Gray 2008; Woodhouse et al.
2012), and segregation observed in rotating drums (Schlick et al. 2015) or in silos
(Fan & Hill 2015) have been successfully modelled using this framework. However,
the expression for the segregation flux remains largely empirical, and would benefit
from a better understanding of the underlying physics controlling the segregation
phenomenon. Moreover, the kinetic sieving mechanism seems to be insufficient to
account for some experimental observations. Heavy enough particles can sink instead
of rising up during the flow on inclined plane or in rotating drum (Thomas 2000;
Félix & Thomas 2004a), showing that gravity forces can overcome segregation. This
result suggests that a dynamic picture in term of forces may be more appropriate to
describe the segregation phenomenon. However, what controls this force is not clear.
For example, when comparing segregation on an inclined plane and in a silo, large
particles go to low-shear regions in flows down inclined planes, whereas they migrate
towards regions of high shear in dense flows in a silo (Fan & Hill 2011).

The objective of the present work is to precisely investigate the segregation force
on a single coarse particle in a bath of small particles using two-dimensional
(2D) discrete element simulations, in order to understand under which conditions
segregation occurs and what are the relevant control parameters. The configuration
studied in our simulations and the method used to measure the segregation force is
presented in § 2. The results and scaling laws deduced from simulations in different
shear flow configurations are shown in § 3. Discussion of the main results and
conclusion are given in § 4.

2. Simulations and methods

The configuration of interest is sketched in figure 1(a). To be able to perform a large
number of simulations changing a wide range of control parameters, we restrict our
study to a 2D granular medium made of disks that is periodic in the x direction. The
medium is made of disks of mean diameter d = 1.5 mm with a slight polydispersity
of 20 % and density ρp = 2500 kg m−3. The medium is sheared between two rigid
rough plates made of a random layer of particles glued together (figure 1a). The
simulations are made using the open source discrete element software LIGGGHTS
(Kloss et al. 2012). The code is based on a molecular dynamics method for soft,
inelastic, frictional spheres. The interaction forces between the particles are described
in figure 1(b) and correspond to a Hooke contact law with friction and dissipation. The
normal force between two particles in contact is modelled by a spring-dashpot system
of stiffness kn= 81.104 N m−1, viscosity γn= 12 kg s−1, whereas the tangential force
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FIGURE 1. (a) Sketch of the simulated configuration. The bottom plate is fixed; the
top plate is rigid and moves at a velocity V and is submitted to a pressure P0. The
coarse particle of diameter dc is vertically confined in a harmonic potential of stiffness k.
(b) Mechanical model for the contact forces between particles in the simulation. The
coefficients used are kn= 81.104 N m−1, kt= 86.104 N m−1, γn= γt= 12 kg s−1, µg= 0.5.
(c) Segregation force Fseg scaled by buoyancy measured for different spring stiffnesses
k scaled by particle normal contact stiffness kn. The arrow indicates the spring stiffness
k used in the study. Simulation for P0 = 1900 Pa, µ = |τ |/P = 0.39, g = −7.5 m s−2ez,
dc = 4 d. Inset: standard deviation of the vertical position of the coarse particle scaled by
its diameter function of the scaled spring stiffness.

is a Coulomb sliding block with friction coefficient µg = 0.5 coupled with a spring
dashpot (stiffness kt = 86.104 N m−1 and viscosity γt = γn). The granular medium is
confined under a pressure P0 by applying a constant downward force on each particle
of the top plate. The typical range of pressure is 500 Pa< P0 < 9500 Pa. The shear
is prescribed by imposing a velocity V at the top plate in the range 0.4 m s−1 <V <
7.5 m s−1. In addition to the boundary conditions imposed by the top rigid plate, a
body gravity field might be applied to the granular medium either in the vertical −z
direction, in the horizontal x direction or in any inclined directions g = gxex − gzez.
Typical levels of gravity investigated in this study are in the range 0< g< 7.5 m s−2.

In the absence of gravity the system is symmetric and the stresses are homogeneous
along the z direction (figure 2d). As a result, when the medium is sheared the
measured velocity profile is linear (figure 2c), defining a constant shear rate γ̇ =V/h.
In the following we restrict our study to the dense flow regime for which the
inertial number I = γ̇ d/

√
P0/ρp is in the range 4 × 10−3 < I < 0.25 (corresponding

to volume fraction φ > 0.74). The shape of the constitutive laws for the effective
friction coefficient µ(I) and volume fraction φ(I) are shown in figure 2(a,b). In
the quasi-static regime when I → 0, the friction coefficient is µc = 0.28 and the
critical volume fraction is φc= 0.82, consistent with previous studies on 2D frictional
discs (Da Cruz et al. 2005). As soon as a vertical gravity (respectively a horizontal
gravity) is applied, the stress distribution is no longer uniform along z, and a gradient
of pressure (respectively a gradient of shear stress) develops, leading to an asymmetric
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FIGURE 2. Friction coefficient µ = |τ |/P (a) and volume fraction φ (b) as a function
of the inertial number I for homogeneous plane shear (g = 0). Average velocity profiles
(c,e,g) and corresponding stress profiles (d, f,h) for g= 0 (c,d), g=−7.5 m s−2ez (e, f ) and
g= 7.5 m s−2ex (g,h). The top plate velocity is V = 2.5 m s−1 and the confining pressure
is P0= 1600 Pa (c–f ) or P0= 4500 Pa (g,h). Dotted lines are measured with the intruder,
at z̄m/h= 0.5 (c,d), z̄m/h= 0.76 (e, f ), z̄m/h= 0.27 (g,h).

velocity profile, as shown in figure 2(e–h). By controlling the direction of gravity,
one can thus switch from a configuration where asymmetry comes from a pressure
gradient to a configuration where asymmetry comes from a shear stress gradient like
in silo flows.

To study segregation in this configuration, a test particle of diameter dc and same
density as the bulk particles is introduced at different positions in the layer (figure 1a).
In most simulations, the test particle diameter dc is larger than the diameter d of
the bulk particles. To accurately measure the force experienced by the test particle,
we mimic the existence of a harmonic optical trap in the z direction for the test
particle only. In addition to the gravity and to the contact forces exerted by the other
particles, a force Fspr = −k × (z − z0)ez is imposed to the large particle, where z is
its vertical position and z0 a reference position. The coarse particle is thus attached
with a spring of stiffness k to the vertical position z0, but is free to move horizontally
with the flow. When the stationary regime is reached, the coarse particle flows with
the bulk but remains on average at a fixed altitude zm. This equilibrium position in
the vertical direction results from the balance between three forces: the weight of the
test particle −mcgz, where mc = ρgπd2

c/4 is the mass of the test particle, the spring
force −k(zm − z0) and the segregation force Fseg, defined as the sum of the vertical
contributions of the contact forces exerted by the small particles on the test particle.
The segregation force Fseg can thus be estimated either from the shift in the vertical
position Fseg = k(z̄m − z0)+ mcgz, z̄m being the time-averaged vertical position of the
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FIGURE 3. Segregation force as a function of the buoyancy −(πdc
2/4)(∂P/∂z) for

simulations with vertical gravity g =−g ez (a) and as a function of −(πdc
2/4)(∂|τ |/∂z)

for simulations with horizontal gravity g= g ex (b). Dotted lines correspond to the weight
of the coarse particle (dc = 4 d). Symbols are coloured by the local friction coefficient
µ= |τ |/P. Uncertainty of the average forces are of the order of the point size.

test particle, or directly by computing the time average of the sum of the contact
forces experienced by the coarse particle. We have checked that both methods give
the same results. We have also checked that the measure of Fseg is independent of
the external spring stiffness k, as long as it is much smaller than the grain stiffness
(figure 1c). Note that the fluctuations of the vertical position of the trapped particle
increase with kn/k, but have no effect on the measured segregation force (figure 1c,
inset). In the following we choose k= 70 N m−1.

Notably, for some combination of P0 and g, non-flowing zones where the local
friction coefficient µ= |τ |/P is below the minimal friction coefficient µc can appear,
either at the bottom of the sample in the case g = −gez or at the top in the case
g= gex. This effect limits the range of g that can be explored, and simulations where
the coarse particle position zm ends up in one of these pseudo-static zones, where
µ<µc, have been discarded.

3. Results

A large number of simulations have been carried out to investigate how the
segregation force evolves depending on the flow conditions. We first set the size
of the coarse particle equal to dc = 4d. A key control parameter in the segregation
problem is the gravity imposed to the system. In absence of gravity, no mean lift
force is measured on the large particle, as expected from symmetry argument. As soon
as gravity is switched on, the up/down symmetry is broken and a segregation force is
measured. As a first step in our analysis, the two cases corresponding, respectively, to
a vertical and a horizontal gravity are studied independently and results are presented
in figure 3(a,b), respectively.

Let us first consider the case with a vertical gravity, g=−g ez. The force balance
implies that a gradient of vertical normal stress (called pressure below for sake of
simplicity) ∂P/∂z exists, the shear stress τ being constant across the layer (figure 2f ).
In figure 3(a) the segregation force Fseg is plotted as a function of the two-dimensional
buoyancy force −(πdc

2/4)(∂P/∂z), with (∂P/∂z) being measured far from the
coarse particle but at the vertical level corresponding to its steady mean position.
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Dimensionally, buoyancy is the only force one can construct based on the stress
gradient. Moreover, it has been shown to be the relevant scaling for the lift force
experienced by an object moving in a static granular medium (Guillard, Forterre &
Pouliquen 2014). The different points in figure 3(a) are obtained for different levels
of gravity g, different confining pressures P0, different shear velocities V and different
mean positions zm in the layer. The first observation is that the segregation force is
positive and equal to approximately twice the weight of the coarse particle, meaning
that the coarse particle in the same configuration, but without the spring, would rise
up to the top, i.e. in the direction opposite to the pressure gradient. The second
result is that the segregation force follows an approximately linear variation with the
buoyancy force. However, this scaling does not entirely capture the variation, as a
significant scatter exists, a point that will be discussed later.

We now turn to the case of a horizontal gravity, g = g ex. In this case the force
balance implies that a gradient of shear stress ∂|τ |/∂z exists, the normal stress P
being constant across the layer. In figure 3(b) the segregation forces measured for
different g, P0, V and position z0 are plotted versus −(πdc

2/4)(∂|τ |/∂z), by analogy
with the buoyancy force. In this case the measured segregation force is negative,
meaning that the coarse particle in the presence of a shear stress gradient has a
tendency to sink in the direction of the gradient, in opposition to the previous case.
Notice that the relevant control parameter is the gradient of the modulus of the shear
stress, as changing the sign of the gravity from g = g ex to g = −g ex and velocity
from V0 ex to −V0 ex does not change the segregation force while changing the sign
of τ and ∂τ/∂z. Figure 3(b) shows that the segregation force in this case also varies
linearly with the buoyancy-like force, although again the scaling is not perfect and
does not capture the entire behaviour.

A more careful analysis of figure 3 shows that data are ordered according to the
friction coefficient µ = |τ |/P indicated by the colour of the symbols. This suggests
that the segregation force might scale with the stress gradients times a function of
the friction coefficient. To test this hypothesis, we plot in figure 4 the ratio of the
segregation force over the buoyancy-like force for the vertical and horizontal gravity,
as a function of the friction coefficient. All data obtained for different flow parameters
collapse on two main curves for the cases of vertical and horizontal gravity, suggesting
the following expressions for the segregation force:

Fseg =−F (µ)
πdc

2

4
∂P
∂z

for g=−g ez, (3.1)

Fseg =−G (µ) πdc
2

4
∂|τ |
∂z

for g= g ex. (3.2)

F(µ) and G(µ) are functions of the local friction coefficient µ = |τ |/P and can be
empirically fitted from figure 4 by F(µ) = 2.4 + 0.73 exp(−(µ − µc)/0.051) and
G(µ)=−(2+ 5.5 exp(−(µ−µc)/0.076)).

These expressions thus provide the scaling of the segregation force for the two
distinct cases of either a vertical or a horizontal gravity. To generalize this result, we
now consider an inclined gravity, when both a pressure gradient and a shear stress
gradient exist. A linear expansion of the segregation force as a function of the stress
gradients suggests that the segregation force might simply be the sum of the two
contributions given by (3.1) and (3.2). To test this idea, simulations have been carried
out for gravity at different inclinations θ from vertical (0<θ < 90◦) and for two levels
of gravity (circles and squares in figure 5). For each run, the measured segregation
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FIGURE 4. Segregation force Fseg scaled by the buoyancy-like forces (see (3.1) and (3.2))
as a function of the local friction coefficient µ for both the vertical (F , red) and horizontal
(G, black) gravity cases. Lines are fits of the data by exponential functions: F(µ)= 2.4+
0.73 exp(−(µ−µc)/0.051), and G(µ)=−(2+ 5.5 exp(−(µ−µc)/0.076)). Data obtained
for dc = 4 d.

force Fseg experienced by the coarse particle is compared to the prediction Fth
seg given

by the sum of the two expressions (3.1) and (3.2), in which P, |τ |, ∂P/∂z and ∂|τ |/∂z
are measured far from the coarse particle but at the same vertical position. Figure 5
shows that the experimental points nicely collapse on the Fseg=Fth

seg line, showing the
relevance of the additivity assumption. In this figure, we also report simulations made
for flows down inclined planes (triangles), which correspond to the configuration of
figure 1(a) in which the top plate has been removed and P0 = 0, g= 9.81 m s−2. In
this case, the ratio of shear to normal stress (µ) is constant across the layer, but both
a pressure and a shear stress gradient exist. Although a limited range of inclinations
gives rise to a steady flow, the data collapse on the same line as before, except at
the highest inclination θ = 30◦, where the system enters a more dilute and collisional
regime (see inset of figure 5). All together, these results show that the segregation
force is correctly captured by the sum of the two contributions given by (3.1) and
(3.2).

So far, all data have been obtained for a coarse particle diameter dc= 4 d. Figure 6
shows how the segregation force varies as function of the size ratio dc/d for a
wide range of test particle diameter 0.5 d < dc < 10 d and vertical (red dots) or
horizontal (black dots) gravity. When the diameter of the test particle is equal to the
mean diameter of the bulk particle, dc/d = 1, no segregation effect is expected. This
implies a segregation force equal to the weight of the particle in the case of vertical
gravity (that is Fseg = −(1/φ)(πdc

2/4)(∂P/∂z), since hydrostatic equilibrium implies
(∂P/∂z)=−ρpφg, with φ∼ 0.8 the volume fraction of grains) and Fseg= 0 in the case
of horizontal gravity. Our direct measurement of the segregation force in figure 6 is
coherent with this picture, with F = 1/φ and G = 0 for dc ≈ 1.06 d, the uncertainty
coming from the polydispersity of our medium. When the diameter of the test particle
increases, the amplitude of the segregation force induced by a pressure gradient or a
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FIGURE 5. Measured segregation force Fseg as a function as the predicted force Fseg=Fth
seg

based on the sum of the empirical vertical and horizontal stress gradient contribution given
by (3.1) and (3.2). (p andu): shear cell configuration with inclined gravity; (q): inclined
plane configuration. The data from figure 4 are also indicated (× and +). Colours of the
symbols indicate the inclination angle θ of the gravity from −z. Inset: close up around
the data corresponding to the inclined plane simulations. Data obtained for dc = 4 d.
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FIGURE 6. Scaled segregation force as a function of the ratio of particle size dc/d for
the two gravity directions. V = 7.5 m s−1, g= 3 m s−2, µ in between 0.4 and 0.42.

shear stress gradient rapidly increases, reaching a maximum at approximately dc/d=2,
before slowly decreasing at large size ratio. No measurements are given for dc > 10 d,
as in this case the system becomes strongly inhomogeneous on the size of the test
particle. The case of a small test particle dc/d< 1 is also of interest. The segregation
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force decreases and becomes less than the weight (respectively larger than zero) for
the case of a vertical (respectively horizontal) gravity, thus reversing the segregation
direction. Notably, the evolution of the segregation force close to dc/d = 1 is very
steep, showing that a slight difference in size has dramatic effects in terms of the
segregation phenomenon. To conclude, we can thus propose the following empirical
expression for the segregation force as a function of the stress gradients:

Fseg =−π
d2

c

4

(
F(µ, dc/d)

∂P
∂z
+ G(µ, dc/d)

∂|τ |
∂z

)
, (3.3)

with F(µ, dc/d) and G(µ, dc/d) being two empirical functions of the friction
coefficient µ = |τ |/P and of the size ratio dc/d satisfying F(µ, 1) = 1/φ(µ) and
G(µ, 1) = 0. The volume fraction φ(µ) decreases with µ due to the increase of
collisions, and is given in figure 2(b) or in Da Cruz et al. (2005). The dependence
of F and G with µ and dc/d is given in figures 4 and 6.

4. Discussions

By imposing a harmonic vertical trap in a simple shear flow, we have been able to
precisely measure the lift force experienced by one large particle flowing in a bath of
small particles in a wide range of flow parameters and for different stress distributions.
We have shown that a segregation force develops, which strongly depends on the size
ratio and on the stress inhomogeneities existing in the material. An empirical scaling
law has been proposed for the segregation force as a sum of a term proportional to
the gradient of pressure and a term proportional to the gradient of shear stress: large
particles have a tendency to migrate towards regions of low pressure and/or regions
of high shear stress.

The evidence of two contributions of opposite sign in the segregation force provides
a simple unified framework to describe the different observations made in the
literature. First, for dense flows in silos, it has been reported that large particles
migrate towards the walls, i.e. towards regions of high shear rate (Fan & Hill 2011).
Such observations can be understood in the framework proposed in this study: large
grains simply migrate towards the region of high shear stress, the pressure being
uniform. This interpretation in terms of the shear stress gradients contrasts with the
model proposed by Fan & Hill (2015), which is based on a kinetic contribution to
the stress. However, kinetic stresses are supposed to vanish in the limit of quasi-static
flows, whereas our simulations show that a shear-stress-induced segregation force still
exists in this limit. A second configuration that has been extensively studied is the
free surface flow of bidispersed material on inclined planes. The large particles are
found to rise up at the free surface, i.e. towards regions of low shear rate. In terms
of stress inhomogeneities, both pressure and shear stress gradients are present in this
configuration, but at the low inclinations where steady dense flows are observed, the
pressure gradient always dominates, leading to an upward segregation, as observed.
Interestingly, experiments of granular flows down inclines using spheres have shown
that the segregation may be reversed for large size ratio (dc/d> 6) (Félix & Thomas
2004a). Our result does not show a change of sign of the segregation force when
increasing size ratio, but the existence of two antagonistic forces, one pushing
towards the region of high shear stress (at the bottom of the inclined plane), the
other towards the low-pressure region at the free surface, may give rise to a complex
dependence with inclination and size ratio. The qualitative agreement between our
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2D simulations and these observations in 3D systems suggests that the scaling for
the segregation force evidenced in our study remains in 3D. However, for a more
quantitative comparison, it would be interesting to perform a similar numerical study
using 3D discrete element methods.

Beyond the qualitative prediction of the direction of segregation in different
configurations, the empirical formula proposed in this study for the segregation
force might be useful to predict segregation fluxes in mixtures of grains of different
sizes. Coupling the expression for the segregation force with the knowledge of the
drag force experienced when one single particle moves relatively to the others, as
studied in Tripathi & Khakhar (2011), should in principle give rise to a prediction of
the segregation velocity when the particle is free to move, and thus to the prediction
of the segregation flux in the limit of vanishing concentration of large particles.
However, the case of mixtures of high concentration is more complex, as interactions
between coarse particles start to play a major role, as discussed by several authors
in the context of the mixture theory (Thornton & Gray 2008; Marks et al. 2011;
Woodhouse et al. 2012; Schlick et al. 2015).

Finally, understanding the physical origin of the segregation force and scalings put
in evidence in our study remains a real challenge. In the presence of pressure gradients
(vertical gravity) a simple argument based on the frictional nature of the granular
rheology might be relevant. The argument is the following: the net segregation force
is the sum of the forces experienced by the top and the bottom parts of the coarse
particle. Both forces are opposite with same magnitude when the pressure is uniform
but, as they scale with the mean pressure level (since the rheology is frictional), the
force on the bottom becomes larger in the presence of a pressure gradient, inducing a
net upward force (Guillard et al. 2014). The contribution of the shear stress gradient
to the segregation force is more difficult to understand, and we have not been able
to find a simple qualitative argument able to explain our findings. But considering
the richness and complexity of the problem of the forces on a particle in a sheared
Newtonian fluid (Guazzelli & Morris 2011), it is not surprising to find non-trivial
effects in the highly non-Newtonian case of a flowing granular medium. Studying the
force on a sphere using a continuum visco-plastic rheology for modelling the bath of
small particles might be a promising approach in the future to clarify the origin of
the segregation force.
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