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Brittle porous media exhibit a variety of irreversible patterns during densification, including sta-
tionary and moving compaction bands in rocks1–3, foams4, cereal packs5 and snow6. We have re-
cently found moving compaction bands in cereal packs5; similar bands have been detected in snow6.
However, the question of generality remains – under what conditions may brittle porous media
disclose other densification patterns? Here, using a new heuristic lattice spring model undergoing
repeated crushing events, we first predict the possible emergence of new forms of dynamic com-
paction patterns; we then discover and confirm these new patterns experimentally in compressed
cereal packs. In total, we distinguish three observed compaction patterns: (i) short-lived erratic
compaction bands, (ii) multiple oscillatory propagating compaction bands, reminiscent of critical
phenomena near phase transitions, and (iii) diffused irreversible densification. The manifestation
of these three different patterns is mapped in a phase diagram using two dimensionless groups that
represent fabric collapse and external dissipation.

Compaction of brittle porous media is of central im-
portance in industry and science, and has many ramifica-
tions, from destruction waves during meteoritic impacts7

to formation of density heterogeneities in pharmaceuti-
cal pills8 and permeability barriers in rocks9,10. Previ-
ous work on brittle porous media has generally revealed
two forms of compaction patterns: stationary and oscil-
latory propagating compaction bands. Specifically, sta-
tionary compaction bands with localised intense volu-
metric strain rate have been frequently observed in a
wide range of brittle porous materials, including rocks1–3,
foams4 and honeycomb materials11. The formation of
such bands has been rationalised mathematically us-
ing continuum models of viscoplasticity12,13 or breakage
mechanics14,15, with the latter connecting the process di-
rectly to the physics of grain breakage and pore collapse.

The formation of oscillatory propagating compaction
bands in porous media was discovered more recently by
Valdes et al.5, via uniaxially confined compression ex-
periments on puffed rice packs. Similar to stationary
compaction bands, the material within these bands ex-
perienced high volumetric strain rates accommodated by
severe grain breakage and pore collapse. By comparing
experiments on material placed in containers with dif-
ferent boundary roughness, this work motivated a con-
nection between compaction dynamics to how energy is
dissipated outside.

More recently, similar experiments on dry foamy snow6

also revealed oscillatory propagating compaction bands,
although with only one or two oscillations per test (this
will be discussed later, in Fig. 2(g-i)). This form of com-
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paction was captured using a phenomenological contin-
uum model for snow, with an assumed elastoplastic yield
function, power-law density dependence, shear-induced
bond failure, strength recovery due to sintering, and non-
locality of damage6. The need for these assumptions in-
dicates that the underlying mechanisms that control the
emergence of oscillatory compaction bands are not clear
yet.

In this paper we present experiments that unfold novel
compaction patterns in brittle porous media. We show
that all the observed patterns can be explained using a
simple lattice spring model. We then map the manifested
patterns in terms of a phase diagram that covers system
and material parameters, applicable for brittle porous
media in general.
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FIG. 1. Experimental and numerical configurations. a
Experimental configuration. b Lattice spring model. c Force-
displacement relation for the springs undergoing repetitive
breakage events during loading. Unloading follows the loading
curve until the spring length equals the relaxed length li that
corresponds to the number of breakage events i; beyond that
point the force is set to zero.

The experimental configuration is schematically shown
in Fig. 1a. It consists of a transparent cylinder initially
filled with puffed rice cereal to a height H0. The ma-
terial is then compressed from the top using a circular
piston with a constant velocity V till about 50% strain
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FIG. 2. Patterns of compaction from experiments and numerical model. a-f Contours of local velocity v normalised
by piston velocity V . a,c,e Experiments with V = 0.013 mm.s−1, 1.3 mm.s−1, and 300 mm.s−1, respectively. b,d,f Model
simulations with V = 5 · 10−6, 2 · 10−5, and 7 · 10−5, respectively (with k0 = 2 · 10−3, F br

0 = 2 · 10−6, η = 1 · 10−3). g-i
Normalised local strain rate ε̇ in g,i compaction experiments on snow for V = 1.125 and 5 mm.s−1, respectively (adapted
from6); h,j Simulations with V = 2.45 · 10−6 and 2.5 · 10−6 (for k0 = 2.5 · 10−4, F br

0 = 2.5 · 10−7, η = 2.5 · 10−4).

ε = 1 − H/H0. During loading we record the side of
the cylinder’s shaft using a regular or high speed video
camera, depending on the piston velocity. Pictures are
then processed using Particle Image Velocimetry to anal-
yse the material’s velocity field. Since the compression is
purely axial, all velocities at a given height are averaged,
and thus, the axial velocity patterns are presented as a
function of the axial depth and time.

Figs. 2(a,c,e) are the spatio-temporal plots of the local
material velocity v(z) normalised by the piston velocity V
for three different V . Clearly, the way the material densi-
fies depends strongly on V . At intermediate V (Fig. 2c),
we recover the oscillatory propagating compaction bands
found previously5. We notice that a single period of os-
cillation starts with a compaction band that nucleates at
the bottom; the band then propagates up until it reaches
the top, and then reemerges at the bottom, to start a
new oscillation period. Such bands split the sample into
an upper material block that moves down with a velocity
close to the piston velocity v(z) ∼ V and a lower block
with v(z) ∼ 0; as shown by5, these two material blocks
are separated by a narrow compaction band of intense ve-
locity gradient. Under lower and higher piston velocities
we unravel different forms of compaction. Under lower
V the material experiences short-lived and localised com-
paction appearing erratically in space (Fig. 2a). Under
higher V the material compacts almost homogeneously
with v(z) ' V

H z.

In parallel to performing experiments, we developed a
heuristic microstructural model to recover the oscillatory
compaction patterns at the intermediate velocity. In car-
rying out computations, the model led us to detect the
new patterns corresponding to the lower and higher ve-
locities, which we then confirmed experimentally. Build-
ing on a spring lattice system, our model extends a previ-
ous quasi-static massless model that recovers stationary
compaction bands16,17. Here, mass is included to tackle

dynamic phenomena and the springs can take repetitive
breakage events to model highly porous brittle material.
The lattice is shown Fig. 1b, and the response of the
spring elements follow the force-length diagram in Fig. 1c
(see detailed information in Methods). The springs trans-
mit elastic forces to the masses; these masses carry a fur-
ther dissipative force given by global damping. Use of
either local damping or friction is discussed in Supple-
mentary to further support the generality of our conclu-
sions.

Figs. 2(b,d,f) present results from the lattice simula-
tions with increasing V , which qualitatively agree with
the experimental results of Fig. 2(a,c,e). We note that
unlike the experimental oscillations in Fig. 2(c) the theo-
retical ones in Fig. 2(d) begin earlier and propagate sym-
metrically. Differences as such develop from unavoidable
experimental heterogeneities, both through initial grain
rearrangements and from statistical variation in grain
strengths18. Indeed, although most experiments showed
upward band propagations, a few others did exhibit ei-
ther symmetrical or downward propagation.

We propose that such patterns are characteristics of
general brittle porous media; the manifested compaction
pattern depends on both material and system parame-
ters. A first support for this generic claim is given in
Supplementary, which shows similar predictions for al-
ternative force dissipation mechanisms (viz. similar pat-
terns arise when one employs local damping or friction
instead of global damping). A second support is given by
comparing model simulations with experiments; this time
on dry foamy snow, given by Barraclough et al.6 (see Fig-
ure 2(g,i)), who adopted an experimental configuration
similar to that of Valdes et al.5 (shown in Fig. 1a). Our
simulations yield similar patterns already under much
smaller strains (see Figure 2(h,j)), including the featuring
of incomplete upward and downward band propagations.
The compliance and brittleness of puffed rice packs are
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much larger than those of snow, and as such, puffed rice
can accommodate many more oscillations; these proper-
ties allow us to identify the compaction patterns in Figs.
2(a,e).

Next, we use the model to unfold how breakage con-
trols the various compaction patterns; an objective that
is practically impossible to probe experimentally. For
this purpose, we examine the breakage rate β as a func-
tion of depth z and strain ε by computing the average
number of breakage events per spring between time steps.
We normalise β using a ‘breakage time’ τ0br, i.e., the typ-
ical time between two consecutive breakage events (see
Methods).

Fig. 3 shows the scaled breakage rate βτ0br along z and
ε for five simulations with distinct identifiable patterns.
Specifically, Figs. 3(a,b,e) correspond to Figs. 2(a,c,e).
It is clear by comparisons, especially between Fig. 3b
and Fig. 2c, that compaction band motions synchronise
with breakage rate. There is almost no breakage out-
side the bands, whereas inside, the breakage rate is the
highest. Under the lowest imposed velocity (Fig. 3a),
breakage develops irregularly in space and time, which
explains why the corresponding velocity field reveals er-
ratic and short-lived compaction bands. Under the high-
est velocity, the breakage develops almost continuously
and uniformly (Fig. 3e), which explains why the corre-
sponding velocity field is almost homogeneous. We detect
further sub-patterns of oscillatory compaction bands –
with bifurcation into more than a single oscillating band,
as shown in Fig. 3c (two fronts) and 3d (three fronts).
These intricate velocity fields are not observed experi-
mentally yet; but this may be explained since the range
of parameters to observe such behaviours is small for ex-
perimental detection (as we shall show in Fig. 4).

Apart from the breakage time τbr mentioned above,
two other time scales are identified from all the model
parameters, including an elastic time τel and the viscous
time τη. The elastic time defines the characteristic time
required from an elastic wave to travel through the whole
sample, and the viscous time denotes the typical time
required for mass m to slow down its motion due to the
global damping. In total, the system is defined in terms
of the following times:

τbr =
Fbr

kl

H

V
; τel =

H

l

√
m

k
; τη =

m

η
(1)

where the index ‘i’ has been omitted to simplify the
text. Given these three times we can define two non-
dimensional groups via time ratios:

Bel =
τbr
τel

=
Fbr

V
√
km

; Bη =
τbr
τη

=
FbrHη

klV m
(2)

to be called the ‘elasto-breakage number’ and ‘visco-
breakage number’, respectively.

Note that since the various parameters change during
one simulation, Bel and Bη change too. Specifically, over

FIG. 3. Breakage patterns. Normalised breakage rate β as
a function of height z and strain ε for various piston velocities:
a-e V = 5 · 10−6, 2 · 10−5, 4 · 10−5, 5.2 · 10−5, and 7 · 10−5.
All other parameters remain consistent with Fig. 2.

time the height H decreases and the number of breakage
events increases (i grows). Thus, ki and F i

br increase as
well. This may cause switches between the behavioural
regimes, as observed in a few simulations. Therefore, the
phase diagram in Fig. 4 collates only the first identifi-
able compaction regimes defined by the initial parameter
values (F 0

br, k0, l0, H0, η, m, V ), in terms of Bel and Bη.
The compaction zones are short-lived and appear er-

ratically when Bη is high because the motion after a lo-
cal breakage event has sufficient time to slow down by
viscosity before further breakage, and since the steady
state stress is essentially uniform throughout. Con-
versely, at very low Bη there is not enough time for relax-
ation, and thus the whole sample undergoes crushing al-
most simultaneously. Intermediately (between these two
extreme regimes) we find oscillatory propagating com-
paction bands with bifurcation dependent on the value
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FIG. 4. Dimensionless phase diagram of compaction
regimes. Shadings are added in the background to highlight
the separation between the observed simulation patterns.

of Bel. As Bel gets smaller we move from a single oscil-
latory band to two or three bands, but the parametric
resolution for capturing such bands narrows. This be-
haviour is reminiscent of critical phenomena near phase
transitions.

In conclusion, this paper presents experiments that un-
fold compaction patterns inherent to brittle porous me-

dia, and a new heuristic spring lattice model that un-
dertakes repetitive breakage events to explain those pat-
terns. The model also captures other previously observed
regimes of compaction in experiments on rocks, puffed
rice packs and dry foamy snow. We note that during
confined compaction, these materials undertake both in-
ternal fabric collapse (e.g., breakage) and external dis-
sipation (e.g., viscous damping), as was underpinned by
the model. We argue that although the physics that con-
trol these two processes may vary between materials, the
mapping of the compaction patterns provided in this pa-
per is generic for brittle porous media (see further sup-
port in Supplementary).

Brittleness adds complexity to the dynamics of granu-
lar flows19 and can alter the propagation of density fronts
often observed during the flow of loose, non-brittle gran-
ular media20–22. Finally, we recall another form of strain
localisation that occurs during the extension of metal-
lic alloys – known as the Portevin - Le Châtelier (PLC)
effect23–25. In this case, the motion of atomic impuri-
ties during the compression leads to a jerky flow of the
material. The compaction band formed in the material
(PLC type A) does not remain steady, but travels back
and forth in the medium, leading to the observation of a
stress drop when the band reaches one end. Therefore,
since this is similar to the observations in Figs. 2c and
2d, our results in brittle porous media may provide a new
perspective into the study of the PLC effect in alloys.
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Methods
Numerical configuration The lattice is a two-dimensional square
lattice with initial cell lengths l0 and masses m at its vertices (see
Fig. 1b). The springs transmit elastic forces to the masses; these
masses carry a further dissipative force. We use a Verlet algorithm
to integrate the mass motions at every time-step ∆t.

The response of the spring elements follows the force-length di-

agram in Fig. 1c, which idealises the compaction response of a
single puffed rice grain sustaining multiple breakages. The growths
in both the stiffness and breakage strength are linear and follow
the rules ki+1 = ki + ak0 and F i+1

br = F i
br + aF 0

br, with a = 0.01
and i being the number of breakage events. The dissipative force
that acts on the masses is given either by global or local viscous
damping, or friction. Here we use global viscous damping to rep-
resent interactions with a background fluid at rest; at node j this
force is calculated by ηvj , where η is the viscosity and vj is the
nodal velocity. Use of either local damping or friction is discussed
in Supplementary to further support the generality of our conclu-
sions.

The relaxed lengths of the springs are initially set to be the
distance between nodes. Nodes at the bottom boundary are fixed;
along the sides nodes can move only vertically, and along the top
they move at constant velocity V . As the lattice compresses, at
some stage the springs start to break. A coarse-graining process
is carried out to extract the velocity field following26. Results are
presented non-dimensionally in terms of basic units of mass [M ] =
m, length [L] = l0 and time [T ] = ∆t.

Definition of the breakage time In the model, spring breakage

occurs every local strain
F i
br

kili
and since the macroscopic strain rate

V
H

in a non-breakable system is uniform with depth, we find τ ibr =

F i
br

kili

H
V

. Since the relaxed spring length, critical breakage force, and

spring stiffness vary in time and space, it is convenient to define

the initial breakage time: τ0br =
F0
br

k0l0

H0
V

Correspondence should be addressed to I.E.

Acknowledgements
I.E. and L.S. thank the Australian Research Council for support
through project DP130101291. J.R.V. thanks the USA National
Science Foundation for support through Grant CBET1336952. The
authors also thank Danielle Griffani, Mikhail Prokopenko, and
Alejo Sfriso for fruitful discussions.

Author contributions

F.G, I.E. and L.S. conceived the model. F.G. performed model sim-

ulations. J.R.V. and I.E. conceived the experiments. P.G., J.R.V.

and F.G. performed the experiments. All the authors contributed

to the writing of the manuscript.



Supplementary material: Dynamic patterns of compaction in brittle porous media

François Guillard1, Pouya Golshan2, Luming Shen1, Julio R. Valdes2, and Itai Einav1,3

(Dated: June 26, 2015)

This supplementary section supports our proposition
that the identified compaction patterns are characteris-
tics of general brittle porous media involving two compet-
ing mechanisms: recurring fabric collapse (such as break-
age or micro-buckling) and external dissipation (such as
damping or friction). For example, in the model shown
in the paper, mass motion is damped via global damping.
To demonstrate that similar compaction patterns can be
found as long as the model represents some form of ex-
ternal dissipation, we replace the global damping with
either local damping or friction.

Local viscous damping is introduced as a force between
node i with velocity vi and node j with velocity vj , i.e.
with a force η(vj−vi) acting on node i and a force η(vi−
vj) acting on node j. Since in that case the viscosity
operates at the spring level, the viscous time τη is no
longer relevant, and is replaced by a Maxwell time τm =
η/k where k is the spring stiffness. Correspondingly, we
define the non-dimensional group that reflects the action
of external dissipation, i.e., using

Bm = τbr/τm. (S1)

Fig. S1a shows the corresponding phase diagram. In-
deed, the diagram is essentially similar to the one found
with global damping, though we note that the oscillatory
compaction band regime extends to higher Bm than Bη,
and that we could not detect more than two oscillatory
compaction bands for the parametric range tested. In-
deed, as we noted in the paper, bifurcation into more
than one oscillatory compaction bands is reminiscent of
critical phenomena near phase transitions, and its possi-
ble detection is highly delicate, either experimentally or
computationally.

Next, we further study the effect of friction on the
emergence of the various compaction regimes. Friction is
here responsible for external dissipation due to interac-
tions with the out of plane confining walls. It is therefore
added to all the nodes, where each node can take a local
frictional force in the opposite direction to its motion.
The frictional force is proportional to the tangential dis-
placement of that node, and we use a high tangential
stiffness kt = 100. If the calculated elastic tangential
force is higher than µP , the force is set to µP , where µ is
the friction coefficient and P is the pressure acting on the

node through the forces in the springs connected to it.
Fig. S1b shows the corresponding phase diagram. Unlike
the previous cases with viscosity, the dimensionless num-
ber corresponding to internal dissipation is simply the
friction coefficient µ. The phase diagram remains compa-
rable to those observed in the viscosity cases, yet we could
not detect more than two oscillatory compaction bands
for the parameteric range tested. Note that it is not pos-
sible to check whether the oscillatory compaction regime
extends for higher friction coefficients µ, since in these
cases the applied stress is screened through the medium
(viz. the Janssen effect1) and only part of the sample is
effectively compressed.
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FIG. S1. Dimensionless phase diagram of compaction pat-
terns with external dissipation via: (a) local viscous damp-
ing, (b) friction. Shadings highlight the various compaction
regimes.
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